1
|
Hajredini F, Alphonse S, Ghose R. BY-kinases: Protein tyrosine kinases like no other. J Biol Chem 2022; 299:102737. [PMID: 36423682 PMCID: PMC9800525 DOI: 10.1016/j.jbc.2022.102737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA
| | - Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Chemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Physics, The Graduate Center of CUNY, New York, New York, USA,For correspondence: Ranajeet Ghose
| |
Collapse
|
2
|
Kumar S, Bhadane R, Shandilya S, Salo-Ahen OMH, Kapila S. Identification of HPr kinase/phosphorylase inhibitors: novel antimicrobials against resistant Enterococcus faecalis. J Comput Aided Mol Des 2022; 36:507-520. [PMID: 35809194 PMCID: PMC9399212 DOI: 10.1007/s10822-022-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
Enterococcus faecalis, a gram-positive bacterium, is among the most common nosocomial pathogens due to its limited susceptibility to antibiotics and its reservoir of the genes coding for virulence factors. Bacterial enzymes such as kinases and phosphorylases play important roles in diverse functions of a bacterial cell and, thus, are potential antibacterial drug targets. In Gram-positive bacteria, HPr Kinase/Phosphorylase (HPrK/P), a bifunctional enzyme is involved in the regulation of carbon catabolite repression by phosphorylating/dephosphorylating the histidine-containing phosphocarrier protein (HPr) at Ser46 residue. Deficiencies in HPrK/P function leads to severe defects in bacterial growth. This study aimed at identifying novel inhibitors of E. faecalis HPrK/P from a commercial compound library using structure-based virtual screening. The hit molecules were purchased and their effect on enzyme activity and growth of resistant E. faecalis was evaluated in vitro. Furthermore, docking and molecular dynamics simulations were performed to study the interactions of the hit compounds with HPrK/P. Among the identified hit molecules, two compounds inhibited the phosphorylation of HPr as well as significantly reduced the growth of resistant E. faecalis in vitro. These identified potential HPrK/P inhibitors open new research avenues towards the development of novel antimicrobials against resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Sandeep Kumar
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, 20520, Turku, Finland
| | - Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520, Turku, Finland.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, 20520, Turku, Finland.
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
3
|
Mazzoli R, Olson DG, Concu AM, Holwerda EK, Lynd LR. In vivo evolution of lactic acid hyper-tolerant Clostridium thermocellum. N Biotechnol 2021; 67:12-22. [PMID: 34915174 DOI: 10.1016/j.nbt.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Lactic acid (LA) has several applications in the food, cosmetics and pharmaceutical industries, as well as in the production of biodegradable plastic polymers, namely polylactides. Industrial production of LA is essentially based on microbial fermentation. Recent reports have shown the potential of the cellulolytic bacterium Clostridium thermocellum for direct LA production from inexpensive lignocellulosic biomass. However, C. thermocellum is highly sensitive to acids and does not grow at pH < 6.0. Improvement of LA tolerance of this microorganism is pivotal for its application in cost-efficient production of LA. In the present study, the LA tolerance of C. thermocellum strains LL345 (wild-type fermentation profile) and LL1111 (high LA yield) was increased by adaptive laboratory evolution. At large inoculum size (10 %), the maximum tolerated LA concentration of strain LL1111 was more than doubled, from 15 g/L to 35 g/L, while subcultures evolved from LL345 showed 50-85 % faster growth in medium containing 45 g/L LA. Gene mutations (pyruvate phosphate dikinase, histidine protein kinase/phosphorylase) possibly affecting carbohydrate and/or phosphate metabolism have been detected in most LA-adapted populations. Although improvement of LA tolerance may sometimes also enable higher LA production in microorganisms, C. thermocellum LA-adapted cultures showed a yield of LA, and generally of other organic acids, similar to or lower than parental strains. Based on its improved LA tolerance and LA titer similar to its parent strain (LL1111), mixed adapted culture LL1630 showed the highest performing phenotype and could serve as a framework for improving LA production by further metabolic engineering.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy; Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Angela Maria Concu
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
4
|
Neira JL, Palomino-Schätzlein M, Hurtado-Gómez E, Ortore MG, Falcó A. An N-terminal half fragment of the histidine phosphocarrier protein, HPr, is disordered but binds to HPr partners and shows antibacterial properties. Biochim Biophys Acta Gen Subj 2021; 1865:130015. [PMID: 34537288 DOI: 10.1016/j.bbagen.2021.130015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes. METHODS We obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR). RESULTS Secondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules. CONCLUSIONS Although HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity. GENERAL SIGNIFICANCE HPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | | | | | - María G Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alberto Falcó
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain.
| |
Collapse
|
5
|
Overview of protein phosphorylation in bacteria with a main focus on unusual protein kinases in Bacillus subtilis. Res Microbiol 2021; 172:103871. [PMID: 34500011 DOI: 10.1016/j.resmic.2021.103871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is a post-translational modification that affects protein activity through the addition of a phosphate moiety by protein kinases or phosphotransferases. It occurs in all life forms. In addition to Hanks kinases found also in eukaryotes, bacteria encode membrane histidine kinases that, with their cognate response regulator, constitute two-component systems and phosphotransferases that phosphorylate proteins involved in sugar utilization on histidine and cysteine residues. In addition, they encode BY-kinases and arginine kinases that phosphorylate protein specifically on tyrosine and arginine residues respectively. They also possess unusual bacterial protein kinases illustrated here by examples from Bacillus subtilis.
Collapse
|
6
|
Kang D, Ham HI, Lee SH, Cho YJ, Kim YR, Yoon CK, Seok YJ. Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment. Environ Microbiol 2021; 23:4726-4740. [PMID: 34296500 DOI: 10.1111/1462-2920.15681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
Faecalibacterium prausnitzii is a dominant member of healthy human colon microbiota, regarded as a beneficial gut bacterium due to its ability to produce anti-inflammatory substances. However, little is known about how F. prausnitzii utilizes the nutrients present in the human gut, influencing its prevalence in the host intestinal environment. The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) is a widely distributed and highly efficient carbohydrate transport system found in most bacterial species that catalyses the simultaneous phosphorylation and import of cognate carbohydrates; its components play physiological roles through interaction with other regulatory proteins. Here, we performed a systematic analysis of the 16 genes encoding putative PTS components (2 enzyme I, 2 HPr, and 12 enzyme II components) in F. prausnitzii A2-165. We identified the general PTS components responsible for the PEP-dependent phosphotransfer reaction and the sugar-specific PTS components involved in the transport of two carbohydrates, N-acetylglucosamine and fructose, among five enzyme II complexes. We suggest that the dissection of the functional PTS in F. prausnitzii may help to understand how this species outcompetes other bacterial species in the human intestine.
Collapse
Affiliation(s)
- Deborah Kang
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeong-In Ham
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon-Ran Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Neira JL, Cámara-Artigas A, Hernández-Cifre JG, Ortore MG. The Histidine Phosphocarrier Kinase/Phosphorylase from Bacillus Subtilis Is an Oligomer in Solution with a High Thermal Stability. Int J Mol Sci 2021; 22:3231. [PMID: 33810099 PMCID: PMC8004850 DOI: 10.3390/ijms22063231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
The histidine phosphocarrier protein (HPr) kinase/phosphorylase (HPrK/P) modulates the phosphorylation state of the HPr protein, and it is involved in the use of carbon sources by Gram-positive bacteria. Its X-ray structure, as concluded from crystals of proteins from several species, is a hexamer; however, there are no studies about its conformational stability, and how its structure is modified by the pH. We have embarked on the conformational characterization of HPrK/P of Bacillus subtilis (bsHPrK/P) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, small-angle X-ray-scattering (SAXS) and dynamic light-scattering (DLS)). bsHPrK/P was mainly a hexamer in solution at pH 7.0, in the presence of phosphate. The protein had a high conformational stability, with an apparent thermal denaturation midpoint of ~70 °C, at pH 7.0, as monitored by fluorescence and CD. The protein was very pH-sensitive, precipitated between pH 3.5 and 6.5; below pH 3.5, it had a molten-globule-like conformation; and it acquired a native-like structure in a narrow pH range (between pH 7.0 and 8.0). Guanidinium hydrochloride (GdmCl) denaturation occurred through an oligomeric intermediate. On the other hand, urea denaturation occurred as a single transition, in the range of concentrations between 1.8 and 18 µM, as detected by far-UV CD and fluorescence.
Collapse
Affiliation(s)
- José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Alicante, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain;
| | - José Ginés Hernández-Cifre
- Departamento de Química Física, Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - María Grazia Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| |
Collapse
|
8
|
Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch 2020; 472:1129-1153. [PMID: 32372286 DOI: 10.1007/s00424-020-02379-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the bloodstream. Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria, in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) superfamily proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence and uptake of sugars may affect pathogenicity and host-microbiota interactions.
Collapse
|
9
|
Kurkcuoglu Z, Bonvin AMJJ. Pre- and post-docking sampling of conformational changes using ClustENM and HADDOCK for protein-protein and protein-DNA systems. Proteins 2019; 88:292-306. [PMID: 31441121 PMCID: PMC6973081 DOI: 10.1002/prot.25802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/01/2023]
Abstract
Incorporating the dynamic nature of biomolecules in the modeling of their complexes is a challenge, especially when the extent and direction of the conformational changes taking place upon binding is unknown. Estimating whether the binding of a biomolecule to its partner(s) occurs in a conformational state accessible to its unbound form (“conformational selection”) and/or the binding process induces conformational changes (“induced‐fit”) is another challenge. We propose here a method combining conformational sampling using ClustENM—an elastic network‐based modeling procedure—with docking using HADDOCK, in a framework that incorporates conformational selection and induced‐fit effects upon binding. The extent of the applied deformation is estimated from its energetical costs, inspired from mechanical tensile testing on materials. We applied our pre‐ and post‐docking sampling of conformational changes to the flexible multidomain protein‐protein docking benchmark and a subset of the protein‐DNA docking benchmark. Our ClustENM‐HADDOCK approach produced acceptable to medium quality models in 7/11 and 5/6 cases for the protein‐protein and protein‐DNA complexes, respectively. The conformational selection (sampling prior to docking) has the highest impact on the quality of the docked models for the protein‐protein complexes. The induced‐fit stage of the pipeline (post‐sampling), however, improved the quality of the final models for the protein‐DNA complexes. Compared to previously described strategies to handle conformational changes, ClustENM‐HADDOCK performs better than two‐body docking in protein‐protein cases but worse than a flexible multidomain docking approach. However, it does show a better or similar performance compared to previous protein‐DNA docking approaches, which makes it a suitable alternative.
Collapse
Affiliation(s)
- Zeynep Kurkcuoglu
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Meysman P, Titeca K, Eyckerman S, Tavernier J, Goethals B, Martens L, Valkenborg D, Laukens K. Protein complex analysis: From raw protein lists to protein interaction networks. MASS SPECTROMETRY REVIEWS 2017; 36:600-614. [PMID: 26709718 DOI: 10.1002/mas.21485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
The elucidation of molecular interaction networks is one of the pivotal challenges in the study of biology. Affinity purification-mass spectrometry and other co-complex methods have become widely employed experimental techniques to identify protein complexes. These techniques typically suffer from a high number of false negatives and false positive contaminants due to technical shortcomings and purification biases. To support a diverse range of experimental designs and approaches, a large number of computational methods have been proposed to filter, infer and validate protein interaction networks from experimental pull-down MS data. Nevertheless, this expansion of available methods complicates the selection of the most optimal ones to support systems biology-driven knowledge extraction. In this review, we give an overview of the most commonly used computational methods to process and interpret co-complex results, and we discuss the issues and unsolved problems that still exist within the field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:600-614, 2017.
Collapse
Affiliation(s)
- Pieter Meysman
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Kevin Titeca
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Sven Eyckerman
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Bart Goethals
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- IBioStat, Hasselt University, Hasselt, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
11
|
Zhu S, Fage CD, Hegemann JD, Yan D, Marahiel MA. Dual substrate-controlled kinase activity leads to polyphosphorylated lasso peptides. FEBS Lett 2016; 590:3323-3334. [DOI: 10.1002/1873-3468.12386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/10/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Shaozhou Zhu
- Department of Chemistry and Biochemistry; Philipps-Universität Marburg; Germany
- State Key Laboratory of Chemical Resources Engineering; Beijing University of Chemical Technology; China
| | - Christopher D. Fage
- Department of Chemistry and Biochemistry; Philipps-Universität Marburg; Germany
| | - Julian D. Hegemann
- Department of Chemistry and Biochemistry; Philipps-Universität Marburg; Germany
| | - Dushan Yan
- Department of Chemistry and Biochemistry; Philipps-Universität Marburg; Germany
| | - Mohamed A. Marahiel
- Department of Chemistry and Biochemistry; Philipps-Universität Marburg; Germany
| |
Collapse
|
12
|
Zhu S, Hegemann JD, Fage CD, Zimmermann M, Xie X, Linne U, Marahiel MA. Insights into the Unique Phosphorylation of the Lasso Peptide Paeninodin. J Biol Chem 2016; 291:13662-78. [PMID: 27151214 DOI: 10.1074/jbc.m116.722108] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
Lasso peptides are a new class of ribosomally synthesized and post-translationally modified peptides and thus far are only isolated from proteo- and actinobacterial sources. Typically, lasso peptide biosynthetic gene clusters encode enzymes for biosynthesis and export but not for tailoring. Here, we describe the isolation of the novel lasso peptide paeninodin from the firmicute Paenibacillus dendritiformis C454 and reveal within its biosynthetic cluster a gene encoding a kinase, which we have characterized as a member of a new class of lasso peptide-tailoring kinases. By employing a wide variety of peptide substrates, it was shown that this novel type of kinase specifically phosphorylates the C-terminal serine residue while ignoring those located elsewhere. These experiments also reveal that no other recognition motif is needed for efficient enzymatic phosphorylation of the C-terminal serine. Furthermore, through comparison with homologous HPr kinases and subsequent mutational analysis, we confirmed the essential catalytic residues. Our study reveals how lasso peptides are chemically diversified and sets the foundation for rational engineering of these intriguing natural products.
Collapse
Affiliation(s)
- Shaozhou Zhu
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Julian D Hegemann
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christopher D Fage
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Marcel Zimmermann
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Xiulan Xie
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Uwe Linne
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Mohamed A Marahiel
- From the Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
13
|
Derkaoui M, Antunes A, Poncet S, Nait Abdallah J, Joyet P, Mazé A, Henry C, Taha MK, Deutscher J, Deghmane AE. The phosphocarrier protein HPr of Neisseria meningitidis interacts with the transcription regulator CrgA and its deletion affects capsule production, cell adhesion, and virulence. Mol Microbiol 2016; 100:788-807. [PMID: 26858137 DOI: 10.1111/mmi.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
The bacterial phosphotransferase system (PTS) transports and phosphorylates sugars, but also carries out numerous regulatory functions. The β-proteobacterium Neisseria meningitidis possesses an incomplete PTS unable to transport carbon sources because it lacks a membrane component. Nevertheless, the residual phosphorylation cascade is functional and the meningococcal PTS was therefore expected to carry out regulatory roles. Interestingly, a ΔptsH mutant (lacks the PTS protein HPr) exhibited reduced virulence in mice and after intraperitoneal challenge it was rapidly cleared from the bloodstream of BALB/c mice. The rapid clearance correlates with lower capsular polysaccharide production by the ΔptsH mutant, which is probably also responsible for its increased adhesion to Hec-1-B epithelial cells. In addition, compared to the wild-type strain more apoptotic cells were detected when Hec-1-B cells were infected with the ΔptsH strain. Coimmunoprecipitation revealed an interaction of HPr and P-Ser-HPr with the LysR type transcription regulator CrgA, which among others controls its own expression. Moreover, ptsH deletion caused increased expression of a ΦcrgA-lacZ fusion. Finally, the presence of HPr or phospho-HPr's during electrophoretic mobility shift assays enhanced the affinity of CrgA for its target sites preceding crgA and pilE, but HPr did not promote CrgA binding to the sia and pilC1 promoter regions.
Collapse
Affiliation(s)
- Meriem Derkaoui
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Ana Antunes
- Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jamila Nait Abdallah
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Philippe Joyet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alain Mazé
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Centre National de la Recherche Scientifique, UMR8261, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| |
Collapse
|
14
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
15
|
Jiang L, Chen YB, Zheng J, Chen Z, Liu Y, Tao Y, Wu W, Chen Z, Wang BC. Structural Basis of Reversible Phosphorylation by Maize Pyruvate Orthophosphate Dikinase Regulatory Protein. PLANT PHYSIOLOGY 2016; 170:732-41. [PMID: 26620526 PMCID: PMC4734583 DOI: 10.1104/pp.15.01709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 05/12/2023]
Abstract
Pyruvate orthophosphate dikinase (PPDK) is one of the most important enzymes in C4 photosynthesis. PPDK regulatory protein (PDRP) regulates the inorganic phosphate-dependent activation and ADP-dependent inactivation of PPDK by reversible phosphorylation. PDRP shares no significant sequence similarity with other protein kinases or phosphatases. To investigate the molecular mechanism by which PDRP carries out its dual and competing activities, we determined the crystal structure of PDRP from maize (Zea mays). PDRP forms a compact homo-dimer in which each protomer contains two separate N-terminal (NTD) and C-terminal (CTD) domains. The CTD includes several key elements for performing both phosphorylation and dephosphorylation activities: the phosphate binding loop (P-loop) for binding the ADP and inorganic phosphate substrates, residues Lys-274 and Lys-299 for neutralizing the negative charge, and residue Asp-277 for protonating and deprotonating the target Thr residue of PPDK to promote nucleophilic attack. Surprisingly, the NTD shares the same protein fold as the CTD and also includes a putative P-loop with AMP bound but lacking enzymatic activities. Structural analysis indicated that this loop may participate in the interaction with and regulation of PPDK. The NTD has conserved intramolecular and intermolecular disulfide bonds for PDRP dimerization. Moreover, PDRP is the first structure of the domain of unknown function 299 enzyme family reported. This study provides a structural basis for understanding the catalytic mechanism of PDRP and offers a foundation for the development of selective activators or inhibitors that may regulate photosynthesis.
Collapse
Affiliation(s)
- Lun Jiang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Yi-Bo Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Jiangge Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Zhenhang Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Yujie Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Ye Tao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| | - Bai-Chen Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)
| |
Collapse
|
16
|
Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob Agents Chemother 2013; 58:957-65. [PMID: 24277024 DOI: 10.1128/aac.01919-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are ubiquitous inhabitants of the gastrointestinal (GI) tract. However, antibiotic-resistant enterococci are also major causes of hospital-acquired infections. Enterococci are intrinsically resistant to cephalosporins, enabling growth to abnormally high densities in the GI tract in patients during cephalosporin therapy, thereby promoting dissemination to other sites where they cause infection. Despite its importance, many questions about the underlying basis for cephalosporin resistance remain. A specific two-component signaling system, composed of the CroS sensor kinase and its cognate response regulator (CroR), is required for cephalosporin resistance in Enterococcus faecalis, but little is known about the factors that control this signaling system to modulate resistance. To explore the signaling network in which CroR participates to influence cephalosporin resistance, we employed a protein fragment complementation assay to detect protein-protein interactions in E. faecalis cells, revealing a previously unknown association of CroR with the HPr protein of the phosphotransferase system (PTS) responsible for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses indicate that association with HPr restricts the ability of CroR to promote cephalosporin resistance and gene expression in a nutrient-dependent manner. Mutational analysis suggests that the interface used by HPr to associate with CroR is distinct from the interface used to associate with other cellular partners. Our results define a physical and functional connection between a critical nutrient-responsive signaling system (the PTS) and a two-component signaling system that drives antibiotic resistance in E. faecalis, and they suggest a general strategy by which bacteria can integrate their nutritional status with diverse environmental stimuli.
Collapse
|
17
|
Himmel S, Zschiedrich CP, Becker S, Hsiao HH, Wolff S, Diethmaier C, Urlaub H, Lee D, Griesinger C, Stülke J. Determinants of interaction specificity of the Bacillus subtilis GlcT antitermination protein: functionality and phosphorylation specificity depend on the arrangement of the regulatory domains. J Biol Chem 2012; 287:27731-42. [PMID: 22722928 DOI: 10.1074/jbc.m112.388850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of several catabolic operons in bacteria by transcription antitermination is mediated by RNA-binding proteins that consist of an RNA-binding domain and two reiterated phosphotransferase system regulation domains (PRDs). The Bacillus subtilis GlcT antitermination protein regulates the expression of the ptsG gene, encoding the glucose-specific enzyme II of the phosphotransferase system. In the absence of glucose, GlcT becomes inactivated by enzyme II-dependent phosphorylation at its PRD1, whereas the phosphotransferase HPr phosphorylates PRD2. However, here we demonstrate by NMR analysis and mass spectrometry that HPr also phosphorylates PRD1 in vitro but with low efficiency. Size exclusion chromatography revealed that non-phosphorylated PRD1 forms dimers that dissociate upon phosphorylation. The effect of HPr on PRD1 was also investigated in vivo. For this purpose, we used GlcT variants with altered domain arrangements or domain deletions. Our results demonstrate that HPr can target PRD1 when this domain is placed at the C terminus of the protein. In agreement with the in vitro data, HPr exerts a negative control on PRD1. This work provides the first insights into how specificity is achieved in a regulator that contains duplicated regulatory domains with distinct dimerization properties that are controlled by phosphorylation by different phosphate donors. Moreover, the results suggest that the domain arrangement of the PRD-containing antitermination proteins is under selective pressure to ensure the proper regulatory output, i.e. transcription antitermination of the target genes specifically in the presence of the corresponding sugar.
Collapse
Affiliation(s)
- Sebastian Himmel
- Department of NMR-based Structural Biology, Max Planck Institute for iophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. BMC STRUCTURAL BIOLOGY 2012; 12:6. [PMID: 22554255 PMCID: PMC3427047 DOI: 10.1186/1472-6807-12-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/05/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question "What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?" RESULTS A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex.Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors. CONCLUSIONS The enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.
Collapse
Affiliation(s)
| | - Swapnil Mahajan
- Univ de la Réunion, UMR_S 665, F-97715, Saint-Denis, France
- INSERM, U 665, Saint-Denis, F-97715, France
| | - Alexandre G de Brevern
- INSERM, U 665 DSIMB, Paris, F-75739, France
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, F- 75739, France
- INTS, F-75739, Paris, France
| | | |
Collapse
|
19
|
Ahmed A, Gaadhe K, Sharma GP, Kumar N, Neculai M, Hui R, Mohanty D, Sharma P. Novel insights into the regulation of malarial calcium-dependent protein kinase 1. FASEB J 2012; 26:3212-21. [PMID: 22539638 DOI: 10.1096/fj.12-203877] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) are major effectors of calcium signaling in apicomplexan parasites like Toxoplasma and Plasmodium and control important processes of the parasite life cycle. Despite recently reported crystal structures of Toxoplasma gondii (Tg)CDPKs, several important questions about their regulation remain unanswered. Plasmodium falciparum (Pf)CDPK1 has emerged as a key player in the life cycle of the malaria parasite, as it may be involved in the invasion of the host cells. Molecular modeling and site-directed mutagenesis studies on PfCDPK1 suggested that several residues in the regulatory domain play a dual role, as they seem to contribute to the stabilization of both the active and inactive kinase. Mass spectrometry revealed that PfCDPK1 was autophosphorylated at several sites; some of these were placed at strategic locations and therefore were found to be critical for kinase activation. The N-terminal extension of PfCDPK1 was found to be important for PfCDPK1 activation. Unexpectedly, an ATP binding site in the NTE of PfCDPK1 was identified. Our studies highlight several novel features of PfCDPK1 regulation, which may be shared by other members of the CDPK family. These findings may also aid design of inhibitors against these important targets, which are absent from the host.
Collapse
Affiliation(s)
- Anwar Ahmed
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
20
|
TSUKAMOTO KOKI, YOSHIKAWA TATSUYA, HOURAI YUICHIRO, FUKUI KAZUHIKO, AKIYAMA YUTAKA. DEVELOPMENT OF AN AFFINITY EVALUATION AND PREDICTION SYSTEM BY USING THE SHAPE COMPLEMENTARITY CHARACTERISTIC BETWEEN PROTEINS. J Bioinform Comput Biol 2011; 6:1133-56. [DOI: 10.1142/s0219720008003904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/25/2008] [Accepted: 04/28/2008] [Indexed: 11/18/2022]
Abstract
A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. This system, which we call the affinity evaluation and prediction (AEP) system, was used to evaluate the interaction between 20 protein pairs. The system first executes a "round robin" shape complementarity search of the target protein group, and evaluates the interaction of the complex structures obtained by shape complementarity search. These complex structures are selected by using a statistical procedure that we developed called "grouping". At a low prevalence of 5.0%, our AEP system predicted protein–protein interaction with 65.0% recall, 15.1% precision, 80.0% accuracy, and had an area under the curve (AUC) of 0.74. By optimizing the grouping process, our AEP system successfully predicted 13 protein pairs (among 20 pairs) that were biologically significant combinations. Our ultimate goal is to construct an affinity database that will provide crucial information obtained using our AEP system to cell biologists and drug designers.
Collapse
Affiliation(s)
- KOKI TSUKAMOTO
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - TATSUYA YOSHIKAWA
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - YUICHIRO HOURAI
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - KAZUHIKO FUKUI
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - YUTAKA AKIYAMA
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
21
|
Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, Herzberg C, Commichau FM, Lewis RJ, Stülke J. RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J Bacteriol 2011; 193:5431-41. [PMID: 21803996 PMCID: PMC3187381 DOI: 10.1128/jb.05500-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022] Open
Abstract
The control of mRNA stability is an important component of regulation in bacteria. Processing and degradation of mRNAs are initiated by an endonucleolytic attack, and the cleavage products are processively degraded by exoribonucleases. In many bacteria, these RNases, as well as RNA helicases and other proteins, are organized in a protein complex called the RNA degradosome. In Escherichia coli, the RNA degradosome is assembled around the essential endoribonuclease E. In Bacillus subtilis, the recently discovered essential endoribonuclease RNase Y is involved in the initiation of RNA degradation. Moreover, RNase Y interacts with other RNases, the RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase in a degradosome-like complex. In this work, we have studied the domain organization of RNase Y and the contribution of the domains to protein-protein interactions. We provide evidence for the physical interaction between RNase Y and the degradosome partners in vivo. We present experimental and bioinformatic data which indicate that the RNase Y contains significant regions of intrinsic disorder and discuss the possible functional implications of this finding. The localization of RNase Y in the membrane is essential both for the viability of B. subtilis and for all interactions that involve RNase Y. The results presented in this study provide novel evidence for the idea that RNase Y is the functional equivalent of RNase E, even though the two enzymes do not share any sequence similarity.
Collapse
Affiliation(s)
- Martin Lehnik-Habrink
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Joseph Newman
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Fabian M. Rothe
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Alexandra S. Solovyova
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Cecilia Rodrigues
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christina Herzberg
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Fabian M. Commichau
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Karaca E, Bonvin AMJJ. A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 2011; 19:555-65. [PMID: 21481778 DOI: 10.1016/j.str.2011.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Binding-induced backbone and large-scale conformational changes represent one of the major challenges in the modeling of biomolecular complexes by docking. To address this challenge, we have developed a flexible multidomain docking protocol that follows a "divide-and-conquer" approach to model both large-scale domain motions and small- to medium-scale interfacial rearrangements: the flexible binding partner is treated as an assembly of subparts/domains that are docked simultaneously making use of HADDOCK's multidomain docking ability. For this, the flexible molecules are cut at hinge regions predicted using an elastic network model. The performance of this approach is demonstrated on a benchmark covering an unprecedented range of conformational changes of 1.5 to 19.5 Å. We show from a statistical survey of known complexes that the cumulative sum of eigenvalues obtained from the elastic network has some predictive power to indicate the extent of the conformational change to be expected.
Collapse
Affiliation(s)
- Ezgi Karaca
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
23
|
CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J Bacteriol 2010; 192:3883-92. [PMID: 20525824 DOI: 10.1128/jb.00237-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human clinical isolates of Staphylococcus aureus, for example, strains Newman and N315, cannot grow in the absence of proline, albeit their sequenced genomes harbor genes for two redundant proline synthesis pathways. We show here that under selective pressure, S. aureus Newman generates proline-prototrophic variants at a frequency of 3 x 10(-6), introducing frameshift and missense mutations in ccpA or IS1811 insertions in ptsH, two regulatory genes that carry out carbon catabolite repression (CCR) in staphylococci and other Gram-positive bacteria. S. aureus Newman variants with mutations in rocF (arginase), rocD (ornithine aminotransferase), and proC (Delta(1)-pyrroline 5-carboxylate [P5C] reductase) are unable to generate proline-prototrophic variants, whereas a variant with a mutation in ocd (ornithine cyclodeaminase) is unaffected. Transposon insertion in ccpA also restored proline prototrophy. CcpA was shown to repress transcription of rocF and rocD, encoding the first two enzymes, but not of proC, encoding the third and final enzyme in the P5C reductase pathway. CcpA bound to the upstream regions of rocF and rocD but not to that of proC. CcpA's binding to the upstream regions was greatly enhanced by phosphorylated HPr. The CCR-mediated proline auxotrophy was lifted when nonpreferred carbohydrates were used as the sole carbon source. The ccpA mutant displayed reduced staphylococcal load and replication in a murine model of staphylococcal abscess formation, indicating that carbon catabolite repression presents an important pathogenesis strategy of S. aureus infections.
Collapse
|
24
|
Janin J. Protein–protein docking tested in blind predictions: the CAPRI experiment. MOLECULAR BIOSYSTEMS 2010; 6:2351-62. [DOI: 10.1039/c005060c] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Casabon I, Couture M, Vaillancourt K, Vadeboncoeur C. Kinetic studies of HPr, HPr(H15D), HPr(H15E), and HPr(His approximately P) phosphorylation by the Streptococcus salivarius HPr(Ser) kinase/phosphorylase. Biochemistry 2009; 48:10765-74. [PMID: 19824696 DOI: 10.1021/bi901512b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HPr is a central protein of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). In streptococci, HPr can be phosphorylated at His(15) at the expense of PEP by enzyme I (EI) of the PTS, producing HPr(His approximately P). HPr can also be phosphorylated at Ser(46) by the ATP-dependent HPr(Ser) kinase/phosphorylase (HprK/P), producing HPr(Ser-P). Lastly, HPr can be phosphorylated on both residues, producing HPr(Ser-P)(His approximately P) (HPr-P2). We report here a study on the phosphorylation of Streptococcus salivarius HPr, HPr(H15D), HPr(H15E), and HPr(His approximately P) by HprK/P to assess the involvement of HprK/P in the synthesis of HPr-P2 in streptococcal cells. We first developed a spectrophotometric method for measuring HprK/P kinase activity. Using this assay, we found that the K(m) of HprK/P for HPr at pH 7.4 and 37 degrees C was approximately 110 muM, with a specificity constant (k(cat)/K(m)) of 1.7 x 10(4) M(-1) s(-1). The specificity constants for HPr(H15D) and HPr(H15E) were approximately 13 times lower. Kinetic studies conducted under conditions where HPr(His approximately P) was stable (i.e., pH 8.6 and 15 degrees C) showed that HPr(His approximately P) was a poorer substrate for HprK/P than HPr(H15D), the k(cat)/K(m) for HPr(H15D) and HPr(His approximately P) being approximately 9 and 26 times lower than that for HPr, respectively. Our results suggested that (i) the inefficiency of the phosphorylation of HPr(His approximately P) by HprK/P results from the presence of a negative charge at position 15 as well as from other structural elements and (ii) the contribution of streptococcal HprK/P to the synthesis of HPr-P2 in vivo is marginal.
Collapse
Affiliation(s)
- Israël Casabon
- Groupe de recherche en écologie buccale (GREB), Faculté de Médecine Dentaire, and Département de Biochimie et de Microbiologie, Université Laval, Quebec City, Quebec, Canada
| | | | | | | |
Collapse
|
26
|
Moreira IS, Fernandes PA, Ramos MJ. Protein-protein docking dealing with the unknown. J Comput Chem 2009; 31:317-42. [DOI: 10.1002/jcc.21276] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Olivares-Illana V, Meyer P, Bechet E, Gueguen-Chaignon V, Soulat D, Lazereg-Riquier S, Mijakovic I, Deutscher J, Cozzone AJ, Laprévote O, Morera S, Grangeasse C, Nessler S. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus. PLoS Biol 2008; 6:e143. [PMID: 18547145 PMCID: PMC2422856 DOI: 10.1371/journal.pbio.0060143] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 04/28/2008] [Indexed: 12/19/2022] Open
Abstract
Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function. An idiosyncratic new class of bacterial enzymes, bacterial tyrosine-kinases (BY-kinases), has been characterized. These enzymes, which are involved in an increasing number of physiological processes ranging from stress resistance to pathogenicity, share no sequence similarities with eukaryotic kinases, and their function remains largely unknown. They have nevertheless been described to undergo autophosphorylation on a C-terminal tyrosine cluster and to phosphorylate endogenous protein substrates. We describe here the first crystal structure of a bacterial tyrosine kinase, namely CapB from the pathogen Staphylococcus aureus, in complex with the cytoplasmic domain of the transmembrane stimulatory protein CapA. Our data explain the activation mechanism of CapB by CapA and allow us to propose a regulatory mechanism based on intermolecular autophosphorylation. These results also give new insights onto the phosphorylation of the endogenous substrate CapO, an enzyme involved in the synthesis of polysaccharide precursors. CapA and CapB, among others, are involved as copolymerases in the synthesis of extracellular polysaccharides that are thought to be potent virulence factors. Thus, these structural data provide the basis for designing specific inhibitors for these enzymes, which constitute an original and attractive target for the development of new drugs to treat infectious diseases. Structural analysis of a conserved bacterial tyrosine kinase fromStaphylococcus aureus provides the basis for deciphering its regulatory mechanism, leading to a model for its implication in extracellular polysaccharide synthesis.
Collapse
Affiliation(s)
| | - Philippe Meyer
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France
| | - Emmanuelle Bechet
- Institut de Biologie et Chimie des Protéines, CNRS, Université Lyon 1, Université de Lyon, Lyon, France
| | | | - Didier Soulat
- Institut de Biologie et Chimie des Protéines, CNRS, Université Lyon 1, Université de Lyon, Lyon, France
| | | | - Ivan Mijakovic
- Center for Microbial Biotechnology, BioCentrum, Technical University of Denmark, Lyngby, Denmark
| | - Josef Deutscher
- Laboratory of Microbiology and Molecular Genetics, AgroParisTech, CNRS, INRA, Thiverval-Grignon, France
| | - Alain J Cozzone
- Institut de Biologie et Chimie des Protéines, CNRS, Université Lyon 1, Université de Lyon, Lyon, France
| | - Olivier Laprévote
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France
| | - Solange Morera
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France
| | - Christophe Grangeasse
- Institut de Biologie et Chimie des Protéines, CNRS, Université Lyon 1, Université de Lyon, Lyon, France
- * To whom correspondence should be addressed. E-mail: (CG); (SN)
| | - Sylvie Nessler
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France
- * To whom correspondence should be addressed. E-mail: (CG); (SN)
| |
Collapse
|
28
|
Zheng J, He C, Singh VK, Martin NL, Jia Z. Crystal structure of a novel prokaryotic Ser/Thr kinase and its implication in the Cpx stress response pathway. Mol Microbiol 2007; 63:1360-71. [PMID: 17302814 DOI: 10.1111/j.1365-2958.2007.05611.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cpx signalling system of Escherichia coli and Salmonella enterica senses extracytoplasmic stress and controls expression of factors that allow the bacterium to adapt to these stressors and thereby enhance survival. Many of the Cpx-responsive genes products are of unknown function. We determined the crystal structure of one of these gene products, called YihE in E. coli, which exhibits a eukaryotic kinase fold. Functional assays established that both YihE and the S. enterica YihE homologue, RdoA, undergo autophosphorylation and phosphorylate protein substrates at Ser/Thr residues in vitro, demonstrating that YihE/RdoA is a novel Ser/Thr protein kinase in prokaryotic cells. Phenotypic analysis of yihE/rdoA null strains indicates that this kinase is most abundant in stationary phase, and is important for long-term cell survival and for expression of surface appendages in both a Cpx-independent and -dependent manner. YihE/RdoA is therefore a previously unknown kinase component of a new type of bacterial phosphorelay mechanism, adding kinase activity as another response to the Cpx sensing system that functions to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Jimin Zheng
- Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
29
|
Chaptal V, Vincent F, Gueguen-Chaignon V, Monedero V, Poncet S, Deutscher J, Nessler S, Morera S. Structural analysis of the bacterial HPr kinase/phosphorylase V267F mutant gives insights into the allosteric regulation mechanism of this bifunctional enzyme. J Biol Chem 2007; 282:34952-7. [PMID: 17878158 DOI: 10.1074/jbc.m705979200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HPr kinase/phosphorylase (HPrK/P) is a bifunctional enzyme that controls the phosphorylation state of the phospho-carrier protein HPr, which regulates the utilization of carbon sources in Gram-positive bacteria. It uses ATP or pyrophosphate for the phosphorylation of serine 46 of HPr and inorganic phosphate for the dephosphorylation of Ser(P)-46-HPr via a phosphorolysis reaction. HPrK/P is a hexameric protein kinase of a new type with a catalytic core belonging to the family of nucleotide-binding protein with Walker A motif. It exhibits no structural similarity to eukaryotic protein kinases. So far, HPrK/P structures have shown the enzyme in its phosphorylase conformation. They permitted a detailed characterization of the phosphorolysis mechanism. In the absence of a structure with bound nucleotide, we used the V267F mutant enzyme to assess the kinase conformation. Indeed, the V267F replacement was found to cause an almost entire loss of the phosphorylase activity of Lactobacillus casei HPrK/P. In contrast, the kinase activity remained conserved. To elucidate the structural alterations leading to this drastic change of activity, the x-ray structure of the catalytic domain of L. casei HPrK/P-V267F was determined at 2.6A resolution. A comparison with the structure of the wild type enzyme showed that the mutation induces conformation changes compatible with the switch from phosphorylase to kinase function. Together with nucleotide binding fluorescence measurements, these results allowed us to decipher the cooperative behavior of the protein and to gain new insights into the allosteric regulation mechanism of HPrK/P.
Collapse
Affiliation(s)
- Vincent Chaptal
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Reichenbach B, Breustedt DA, Stülke J, Rak B, Görke B. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. J Bacteriol 2007; 189:4603-13. [PMID: 17449611 PMCID: PMC1913440 DOI: 10.1128/jb.00236-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis, a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtilis cannot efficiently phosphorylate the EIIs of E. coli. In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr protein. Random mutations were introduced into B. subtilis HPr, and a screen for improved growth on PTS sugars yielded amino acid changes in positions 12, 16, 17, 20, 24, 27, 47, and 51, located in the interaction surface of HPr. Most of the changes restore intermolecular hydrophobic interactions and salt bridges normally formed by the corresponding residues in E. coli HPr. The residues present at the targeted positions differ between HPrs of gram-positive and -negative bacteria, but within each group they are highly conserved. Therefore, they may constitute a signature motif that determines the specificity of HPr for either gram-negative or -positive EIIs.
Collapse
Affiliation(s)
- Birte Reichenbach
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University, Grisebachstrasse 8, D-37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
31
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
32
|
Homeyer N, Essigke T, Meiselbach H, Ullmann GM, Sticht H. Effect of HPr phosphorylation on structure, dynamics, and interactions in the course of transcriptional control. J Mol Model 2006; 13:431-44. [PMID: 17139481 DOI: 10.1007/s00894-006-0162-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/04/2006] [Indexed: 11/25/2022]
Abstract
The serine46-phosphorylated form of the bacterial protein HPr fulfils an essential function in carbon catabolite repression (CCR). Using molecular dynamics (MD) we studied the effect of Ser46 phosphorylation on the molecular properties of HPr and its capability to act as the co-repressor of carbon catabolite protein A (CcpA). The calculated pK (a) values for a representative set of HPr(Ser46P) structures indicate that the phosphate group of HPr(Ser46P) exists predominantly in the unprotonated form under neutral conditions. A hydrogen bond detected in HPr(Ser46P) between one phosphate-group oxygen and a side-chain hydrogen of Asn43-an amino acid conserved in all HPr proteins of Gram-positive bacteria that regulate their carbon consumption by CCR-might fulfil an important role in CcpA-HPr(Ser46P) complex formation. MD simulations show that the Ser46P-Asn43 hydrogen bond present in the unbound structure is replaced by intermolecular interactions upon complex formation. The degree to which amino acids in the CcpA-HPr(Ser46P) interface contribute to cofactor binding was analyzed by in silico alanine scanning. Lys307, Arg303, Asp296, Val300, and Tyr295 of CcpA were identified as important amino acids for the CcpA-HPr(Ser46P) interaction. Three of these residues are directly involved in sensing the correct phosphorylation state at His15(HPr) and Ser46(HPr). A substitution of interface residues Val319, Val314, Ser316, Leu321 and Gln320 by alanine showed that these amino acids, which contact helix alpha2 of HPr(Ser46P), play a less prominent role for complex formation.
Collapse
Affiliation(s)
- Nadine Homeyer
- Abteilung für Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
33
|
Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, Hillen W, Goebel W, Müller-Altrock S. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J Bacteriol 2006; 189:473-90. [PMID: 17085572 PMCID: PMC1797385 DOI: 10.1128/jb.00972-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Analysis of Listeria monocytogenes ptsH, hprK, and ccpA mutants defective in carbon catabolite repression (CCR) control revealed significant alterations in the expression of PrfA-dependent genes. The hprK mutant showed high up-regulation of PrfA-dependent virulence genes upon growth in glucose-containing medium whereas expression of these genes was even slightly down-regulated in the ccpA mutant compared to the wild-type strain. The ptsH mutant could only grow in a rich culture medium, and here the PrfA-dependent genes were up-regulated as in the hprK mutant. As expected, HPr-Ser-P was not produced in the hprK and ptsH mutants and synthesized at a similar level in the ccpA mutant as in the wild-type strain. However, no direct correlation was found between the level of HPr-Ser-P or HPr-His-P and PrfA activity when L. monocytogenes was grown in minimal medium with different phosphotransferase system (PTS) carbohydrates. Comparison of the transcript profiles of the hprK and ccpA mutants with that of the wild-type strain indicates that the up-regulation of the PrfA-dependent virulence genes in the hprK mutant correlates with the down-regulation of genes known to be controlled by the efficiency of PTS-mediated glucose transport. Furthermore, growth in the presence of the non-PTS substrate glycerol results in high PrfA activity. These data suggest that it is not the component(s) of the CCR or the common PTS pathway but, rather, the component(s) of subsequent steps that seem to be involved in the modulation of PrfA activity.
Collapse
Affiliation(s)
- Sonja Mertins
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Marr AK, Joseph B, Mertins S, Ecke R, Müller-Altrock S, Goebel W. Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J Bacteriol 2006; 188:3887-901. [PMID: 16707681 PMCID: PMC1482928 DOI: 10.1128/jb.01978-05] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes strains expressing high levels of the virulence regulator PrfA (mutant PrfA* or wild-type PrfA) show strong growth inhibition in minimal media when they are supplemented with glucose but not when they are supplemented with glucose-6-phosphate compared to the growth of isogenic strains expressing low levels of PrfA. A significantly reduced rate of glucose uptake was observed in a PrfA*-overexpressing strain growing in LB supplemented with glucose. Comparative transcriptome analyses were performed with RNA isolated from a prfA mutant and an isogenic strain carrying multiple copies of prfA or prfA* on a plasmid. These analyses revealed that in addition to high transcriptional up-regulation of the known PrfA-regulated virulence genes (group I), there was less pronounced up-regulation of the expression of several phage and metabolic genes (group II) and there was strong down-regulation of several genes involved mainly in carbon and nitrogen metabolism in the PrfA*-overexpressing strain (group III). Among the latter genes are the nrgAB, gltAB, and glnRA operons (involved in nitrogen metabolism), the ilvB operon (involved in biosynthesis of the branched-chain amino acids), and genes for some ABC transporters. Most of the down-regulated genes have been shown previously to belong to a class of genes in Bacillus subtilis whose expression is negatively affected by impaired glucose uptake. Our results lead to the conclusion that excess PrfA (or PrfA*) interferes with a component(s) essential for phosphotransferase system-mediated glucose transport.
Collapse
Affiliation(s)
- A K Marr
- Theodor-Boveri-Institut (Biozentrum), Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Law D, Hotchko M, Ten Eyck L. Progress in computation and amide hydrogen exchange for prediction of protein-protein complexes. Proteins 2006; 60:302-7. [PMID: 15981246 DOI: 10.1002/prot.20574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The macromolecular docking problem that must be solved for experimental biologists is prediction of the structures of complexes for which the components are known or reliably modeled in the unbound state, but the structure of the complex is unknown. The current state of the art in macromolecular docking is such that solving this problem usually requires supplementary experimental chemical and/or biological information to evaluate computational predictions. Amide (1)H/(2)H exchange measured by mass spectroscopy is a promising approach for obtaining such information, because it can reveal interfacial regions of each member of the complex and identify regions of conformational flexibility in the structure. In a previous article (Anand et al., Proc Natl Acad Sci USA 2003;100:13264-13269), we used (1)H/(2)H exchange data to predict the structure of a complex between regulatory and catalytic subunits of protein kinase A. Comparison of the prediction with a recent crystal structure determination (Kim et al., Science 2005;307:690-696) showed large conformational change in the regulatory subunit on formation of the complex. Analysis of the prediction, previous CAPRI results, novel data processing methods for the (1)H/(2)H exchange data, and new fragment docking computations give grounds for cautious optimism that this method can be useful even in cases of substantial conformational change.
Collapse
Affiliation(s)
- Dennis Law
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093-0505, USA
| | | | | |
Collapse
|
36
|
Deutscher J, Saier MH. Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established. J Mol Microbiol Biotechnol 2006; 9:125-31. [PMID: 16415586 DOI: 10.1159/000089641] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The first clearly established example of Ser/Thr/Tyr phosphorylation of a bacterial protein was isocitrate dehydrogenase. In 1979, 25 years after the discovery of protein phosphorylation in eukaryotes, this enzyme was reported to become phosphorylated on a serine residue. In subsequent years, numerous other bacterial proteins phosphorylated on Ser, Thr or Tyr were discovered and the corresponding protein kinases and P-protein phosphatases were identified. These protein modifications regulate all kinds of physiological processes. Ser/Thr/Tyr phosphorylation in bacteria therefore seems to play a similar important role as in eukaryotes. Surprisingly, many bacterial protein kinases do not exhibit any similarity to eukaryotic protein kinases, but rather resemble nucleotide-binding proteins or kinases phosphorylating diverse low-molecular-weight substrates.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG UMR2585, Thiverval-Grignon, France.
| | | |
Collapse
|
37
|
Jiménez JL. Does structural and chemical divergence play a role in precluding undesirable protein interactions? Proteins 2006; 59:757-64. [PMID: 15822102 DOI: 10.1002/prot.20448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand the evolutionary forces establishing, maintaining, breaking, or precluding protein-protein interactions, a comprehensive data set of protein complexes has been analyzed to examine the overlap between protein interfaces and the most conserved or divergent protein surface areas. The most divergent areas tend to be found predominantly away from protein interfaces, although when found at interfaces, they are associated with specific lack of cross-reactivity between close homologues, like in antibody-antigen complexes. Moreover, the amino acid composition of highly variable regions is significantly different from any other protein surfaces. The variable regions present higher structural plasticity as a result of insertions and deletions, and favor charged over hydrophobic residues, a known strategy to minimize aggregation. This suggests that (1) a rapid rate of mutations at these regions might be continuously altering their properties, making difficult the coadaptation, in shape and chemical complementarity, to potential interacting partners; and (2) the existence of some form of selective pressure for variable areas away from interfaces to accumulate charged residues, perhaps as an evolutionary mechanism to increase solubility and minimize undesirable interactions within the crowded cellular environment. Finally, these results are placed into the context of the aberrant oligomerization of sickle-cell anemia hemoglobin and prion proteins.
Collapse
Affiliation(s)
- José L Jiménez
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, United Kingdom.
| |
Collapse
|
38
|
Chaptal V, Larivière L, Gueguen-Chaignon V, Galinier A, Nessler S, Moréra S. X-ray structure of a domain-swapped dimer of Ser46-phosphorylated Crh from Bacillus subtilis. Proteins 2006; 63:249-51. [PMID: 16411239 DOI: 10.1002/prot.20816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vincent Chaptal
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR9063, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
39
|
Deutscher J, Herro R, Bourand A, Mijakovic I, Poncet S. P-Ser-HPr—a link between carbon metabolism and the virulence of some pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:118-25. [PMID: 16182622 DOI: 10.1016/j.bbapap.2005.07.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 07/15/2005] [Accepted: 07/15/2005] [Indexed: 11/16/2022]
Abstract
HPr kinase/phosphorylase phosphorylates HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system, at serine-46. P-Ser-HPr is the central regulator of carbon metabolism in Gram-positive bacteria, but also plays a role in virulence development of certain pathogens. In Listeria monocytogenes, several virulence genes, which depend on the transcription activator PrfA, are repressed by glucose, fructose, etc., in a catabolite repressor (CcpA)-independent mechanism. However, the catabolite co-repressor P-Ser-HPr was found to inhibit the activity of PrfA. In an hprKV267F mutant, in which most of the HPr is transformed into P-Ser-HPr, PrfA was barely active. The ptsH1 mutation (Ser-46 of HPr replaced with an alanine) prevented the inhibitory effect of the hprKV267F mutation. Interestingly, disruption of ccpA also inhibited PrfA activity. This effect is probably also mediated via P-Ser-HPr, since ccpA disruption leads to elevated amounts of P-Ser-HPr. Indeed, a ccpA ptsH1 double mutant exhibited normal PrfA activity. In S. pyogenes, the expression of several virulence genes depends on the transcription activator Mga. Interestingly, the mga promoter is preceded by an operator site, which serves as target for the CcpA/P-Ser-HPr complex. Numerous Gram-negative pathogens also contain hprK, which is often organised in an operon with transcription regulators necessary for the development of virulence, indicating that in these organisms P-Ser-HPr also plays a role in pathogenesis. Indeed, inactivation of Neisseria meningitidis hprK strongly diminished cell adhesion of this pathogen.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG UMR2585, F-78850 Thiverval-Grignon, France.
| | | | | | | | | |
Collapse
|
40
|
Lorca GL, Chung YJ, Barabote RD, Weyler W, Schilling CH, Saier MH. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. J Bacteriol 2005; 187:7826-39. [PMID: 16267306 PMCID: PMC1280314 DOI: 10.1128/jb.187.22.7826-7839.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/22/2005] [Indexed: 11/20/2022] Open
Abstract
Previous studies have suggested that the transcription factor CcpA, as well as the coeffectors HPr and Crh, both phosphorylated by the HprK kinase/phosphorylase, are primary mediators of catabolite repression and catabolite activation in Bacillus subtilis. We here report whole transcriptome analyses that characterize glucose-dependent gene expression in wild-type cells and in isogenic mutants lacking CcpA, HprK, or the HprK phosphorylatable serine in HPr. Binding site identification revealed which genes are likely to be primarily or secondarily regulated by CcpA. Most genes subject to CcpA-dependent regulation are regulated fully by HprK and partially by serine-phosphorylated HPr [HPr(Ser-P)]. A positive linear correlation was noted between the dependencies of catabolite-repressible gene expression on CcpA and HprK, but no such relationship was observed for catabolite-activated genes, suggesting that large numbers of the latter genes are not regulated by the CcpA-HPr(Ser-P) complex. Many genes that mediate nitrogen or phosphorus metabolism as well as those that function in stress responses proved to be subject to CcpA-dependent glucose control. While nitrogen-metabolic genes may be subject to either glucose repression or activation, depending on the gene, almost all glucose-responsive phosphorus-metabolic genes exhibit activation while almost all glucose-responsive stress genes show repression. These responses are discussed from physiological standpoints. These studies expand our appreciation of CcpA-mediated catabolite control and provide insight into potential interregulon control mechanisms in gram-positive bacteria.
Collapse
Affiliation(s)
- Graciela L Lorca
- Division of Biological Sciences, University of California at San Diego, La Jolla, 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
41
|
Nessler S. The bacterial HPr kinase/phosphorylase: a new type of Ser/Thr kinase as antimicrobial target. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:126-31. [PMID: 16202671 DOI: 10.1016/j.bbapap.2005.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 07/21/2005] [Accepted: 07/21/2005] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation plays a major role in bacterial cellular regulation as in eukaryotes. The HPr Kinase/Phosphorylase (HprK/P) was the first bacterial serine protein kinase to have had its structure determined, establishing that it is unrelated to the eukaryotic kinases. HprK/P belongs to another large structural family, the P-loop containing proteins. Among them, P-loop containing kinases have been assumed to only phosphorylate small molecules, but the example of HprK/P suggests that some may have proteins as substrates, defining novel cellular signal transduction pathways. Another major result of the studies presented here is that HprK/P also catalyses the phosphorolysis of the phosphoserine, yielding serine and pyrophosphate. The two different catalytic activities are carried out at the same active site. The determination of the structure of the complex with the protein substrates HPr and PserHPr allowed us to propose a catalytic mechanism. Since regulation of HPr phosphorylation has been shown to be involved in the virulence process of pathogenic bacteria, a search for specific inhibitors of HprK/P is of clinical interest and the first hit has already been found.
Collapse
Affiliation(s)
- Sylvie Nessler
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063, CNRS, 91198-Gif-sur-Yvette, France.
| |
Collapse
|
42
|
Abstract
The Critical Assessment of PRedicted Interactions (CAPRI) experiment was designed in 2000 to test protein docking algorithms in blind predictions of the structure of protein-protein complexes. In four years, 17 complexes offered by crystallographers as targets prior to publication, have been subjected to structure prediction by docking their two components. Models of these complexes were submitted by predictor groups and assessed by comparing their geometry to the X-ray structure and by evaluating the quality of the prediction of the regions of interaction and of the pair wise residue contacts. Prediction was successful on 12 of the 17 targets, most of the failures being due to large conformation changes that the algorithms could not cope with. Progress in the prediction quality observed in four years indicates that the experiment is a powerful incentive to develop new procedures that allow for flexibility during docking and incorporate nonstructural information. We therefore call upon structural biologists who study protein-protein complexes to provide targets for further rounds of CAPRI predictions.
Collapse
Affiliation(s)
- Joël Janin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198-Gif-sur-Yvette, France.
| |
Collapse
|
43
|
Jäger M, Michalet X, Weiss S. Protein-protein interactions as a tool for site-specific labeling of proteins. Protein Sci 2005; 14:2059-68. [PMID: 15987886 PMCID: PMC2279317 DOI: 10.1110/ps.051384705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Probing structures and dynamics within biomolecules using ensemble and single-molecule fluorescence resonance energy transfer requires the conjugation of fluorophores to proteins in a site-specific and thermodynamically nonperturbative fashion. Using single-molecule fluorescence-aided molecular sorting and the chymotrypsin inhibitor 2-subtilisin BPN' complex as an example, we demonstrate that protein-protein interactions can be exploited to afford site-specific labeling of a recombinant double-cysteine variant of CI2 without the need for extensive and time-consuming chromatography. The use of protein-protein interactions for site-specific labeling of proteins is compatible with and complementary to existing chemistries for selective labeling of N-terminal cysteines, and could be extended to label multiple positions within a given polypeptide chain.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
44
|
Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol Microbiol 2005; 55:1435-51. [PMID: 15720552 DOI: 10.1111/j.1365-2958.2005.04473.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Bacillus subtilis, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GapB) and the phosphoenolpyruvate carboxykinase (PckA) enzymes are necessary for efficient gluconeogenesis from Krebs cycle intermediates. gapB and pckA transcription is repressed in the presence of glucose but not via CcpA, the major transcriptional regulator for catabolite repression in B. subtilis. A B. subtilis mini-Tn10 transposant library was screened for clones affected in catabolite repression of gapB. Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes), was found to relieve not only gapB but also pckA transcription from catabolite repression. Purified CcpN specifically bound to the gapB and pckA promoters. ccpN is co-transcribed constitutively with another unknown gene, yqfL. A yqfL deletion lowers the level of gapB and pckA transcription threefold under both glycolytic and gluconeogenic conditions and a ccpN deletion is epistatic over a yqfL deletion. YqfL is thus a positive regulator of the expression of gapB and pckA, the effect of which is not influenced by the metabolic regime of the cell but appears to be mediated by CcpN. ccpN has homologues in many Firmicutes, but not all, while yqfL homologues are widely distributed in Eubacteria and also present in some plants. In all analysed bacterial genomes, ccpN and yqfL are physically linked together or to putative gluconeogenic genes. CcpN thus orchestrates a novel CcpA-independent mechanism for catabolite repression of gluconeogenic genes highly conserved in Firmicutes and appears as a functional analogue of FruR in Enterobacteria. The physiological significance of the regulation mediated via the three B. subtilis global transcription regulators, CcpA, CggR and CcpN, is discussed.
Collapse
Affiliation(s)
- Pascale Servant
- Microbiologie et Génétique Moléculaire, INRA (UMR1238) and CNRS (UMR2585), Institut National Agronomique Paris-Grignon, F-78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
45
|
Stonestrom A, Barabote RD, Gonzalez CF, Saier MH. Bioinformatic analyses of bacterial HPr kinase/phosphorylase homologues. Res Microbiol 2005; 156:443-51. [PMID: 15808949 DOI: 10.1016/j.resmic.2004.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/20/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
HPr kinase/phosphorylases (HprKs) regulate catabolite repression and sugar transport in Gram-positive bacteria by phosphorylating the small phosphotransferase system (PTS) protein HPr on a serine residue. We identified homologues of HprK in currently sequenced genomes and multiply aligned their sequences in order to perform phylogenetic and motif analyses. Seventy-eight homologues from bacteria and one from an archaeon comprise nine phylogenetic clusters. Some homologues come from bacteria whose genomes contain multiple highly divergent paralogues that cluster loosely together. Many of these proteins are truncated or show little or no identifiable similarity outside of the Walker A nucleotide binding domain. HprK homologues were identified in Gram-negative bacteria that appear to lack PTS permeases, suggesting modes of action and substrates that differ from those characterized in Gram-positive bacteria.
Collapse
Affiliation(s)
- Aaron Stonestrom
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
46
|
Maurer T, Meier S, Kachel N, Munte CE, Hasenbein S, Koch B, Hengstenberg W, Kalbitzer HR. High-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus and characterization of its interaction with the bifunctional HPr kinase/phosphorylase. J Bacteriol 2004; 186:5906-18. [PMID: 15317796 PMCID: PMC516805 DOI: 10.1128/jb.186.17.5906-5918.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022] Open
Abstract
A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 +/- 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the complex of HPr with the core of HPrK/P of L. casei in crystals.
Collapse
Affiliation(s)
- Till Maurer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mazé A, Boël G, Poncet S, Mijakovic I, Le Breton Y, Benachour A, Monedero V, Deutscher J, Hartke A. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system. J Bacteriol 2004; 186:4543-55. [PMID: 15231787 PMCID: PMC438589 DOI: 10.1128/jb.186.14.4543-4555.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022] Open
Abstract
A proteome analysis of Lactobacillus casei mutants that are affected in carbon catabolite repression revealed that a 15-kDa protein was strongly overproduced in a ptsHI47T mutant. This protein was identified as EIIA of a mannose class phosphotransferase system (PTS). A 7.1-kb DNA fragment containing the EIIA-encoding open reading frame and five other genes was sequenced. The first gene encodes a protein resembling the RpoN (sigma54)-dependent Bacillus subtilis transcription activator LevR. The following pentacistronic operon is oriented in the opposite direction and encodes four proteins with strong similarity to the proteins of the B. subtilis Lev-PTS and one protein of unknown function. The genes present on the 7.1-kb DNA fragment were therefore called levR and levABCDX. The levABCDX operon was induced by fructose and mannose. No "-12, -24" promoter typical of RpoN-dependent genes precedes the L. casei lev operon, and its expression was therefore RpoN independent but required LevR. Phosphorylation of LevR by P approximately His-HPr stimulates its activity, while phosphorylation by P approximately EIIBLev inhibits it. Disruption of the EIIBLev-encoding levB gene therefore led to strong constitutive expression of the lev operon, which was weaker in a strain carrying a ptsI mutation preventing phosphorylation by both P approximately EIIBLev and P approximately His-HPr. Expression of the L. casei lev operon is also subject to P-Ser-HPr-mediated catabolite repression. The observed slow phosphoenolpyruvate- and ATP-dependent phosphorylation of HPrI47T as well as the slow phosphoryl group transfer from the mutant P approximately His-HPr to EIIALev are assumed to be responsible for the elevated expression of the lev operon in the ptsHI47T mutant.
Collapse
Affiliation(s)
- Alain Mazé
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-INAPG-CNRS, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Delbaere LTJ, Sudom AM, Prasad L, Leduc Y, Goldie H. Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:271-8. [PMID: 15023367 DOI: 10.1016/j.bbapap.2003.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PCK) catalyzes the conversion of oxaloacetate (OAA) to PEP and carbon dioxide with the subsequent conversion of nucleoside triphosphate to nucleoside diphosphate (NDP). The 1.9 A resolution structure of Escherichia coli PCK consisted of a 275-residue N-terminal domain and a 265-residue C-terminal domain with the active site located in a cleft between these domains. Each domain has an alpha/beta topology and the overall structure represents a new protein fold. Furthermore, PCK has a unique mononucleotide-binding fold. The 1.8 A resolution structure of the complex of ATP/Mg(2+)/oxalate with PCK revealed a 20 degrees hinge-like rotation of the N- and C-terminal domains, which closed the active site cleft. The ATP was found in the unusual syn conformation as a result of binding to the enzyme. Along with the side chain of Lys254, Mg(2+) neutralizes charges on the P beta and P gamma oxygen atoms of ATP and stabilizes an extended, eclipsed conformation of the P beta and P gamma phosphoryl groups. The sterically strained high-energy conformation likely lowers the free energy of activation for phosphoryl transfer. Additionally, the gamma-phosphoryl group becomes oriented in-line with the appropriate enolate oxygen atom, which strongly supports a direct S(N)2-type displacement of this gamma-phosphoryl group by the enolate anion. In the 2.0 A resolution structure of the complex of PCK/ADP/Mg(2+)/AlF(3), the AlF(3) moiety represents the phosphoryl group being transferred during catalysis. There are three positively charged groups that interact with the fluorine atoms, which are complementary to the three negative charges that would occur for an associative transition state.
Collapse
Affiliation(s)
- Louis T J Delbaere
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| | | | | | | | | |
Collapse
|
49
|
Poncet S, Mijakovic I, Nessler S, Gueguen-Chaignon V, Chaptal V, Galinier A, Boël G, Mazé A, Deutscher J. HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:123-35. [PMID: 15023355 DOI: 10.1016/j.bbapap.2003.11.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Carbon catabolite repression (CCR) in Gram-positive bacteria is regulated by the bifunctional enzyme HPr kinase/phosphorylase (HprK/P). This enzyme catalyses the ATP- as well as the pyrophosphate-dependent phosphorylation of Ser-46 in HPr, a phosphocarrier protein of a sugar transport and phosphorylation system. HprK/P also catalyses the pyrophosphate-producing, inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr (P-Ser-HPr). P-Ser-HPr functions as catabolite co-repressor by interacting with the LacI/GalR-type repressor, catabolite control protein A (CcpA), and allowing it to bind to operator sites preceding catabolite-regulated transcription units. HprK/P thus indirectly controls the expression of about 10% of the genes of Gram-positive bacteria. The two antagonistic activities of HprK/P are regulated by intracellular metabolites, which change their concentration in response to the absence or presence of rapidly metabolisable carbon sources (glucose, fructose, etc.) in the growth medium. Biochemical and structural studies revealed that HprK/P exhibits no similarity to eukaryotic protein kinases and that it contains a Walker motif A (or P-loop) as nucleotide binding site. Interestingly, HprK/P has a structural fold resembling that in kinases phosphorylating certain low molecular weight substrates such as nucleosides, nucleotides or oxaloacetate. The structures of the complexes of HprK/P with HPr and P-Ser-HPr have also been determined, which allowed proposing a detailed mechanism for the kinase and phosphorylase functions of HprK/P.
Collapse
Affiliation(s)
- Sandrine Poncet
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG UMR2585, F-78850 Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wodak SJ, Méndez R. Prediction of protein–protein interactions: the CAPRI experiment, its evaluation and implications. Curr Opin Struct Biol 2004; 14:242-9. [PMID: 15093840 DOI: 10.1016/j.sbi.2004.02.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Given the increasing interest in protein-protein interactions, the prediction of these interactions from sequence and structural information has become a booming activity. CAPRI, the community-wide experiment for assessing blind predictions of protein-protein interactions, is playing an important role in fostering progress in docking procedures. At the same time, novel methods are being derived for predicting regions of a protein that are likely to interact and for characterizing putative intermolecular contacts from sequence and structural data. Together with docking procedures, these methods provide an integrated computational approach that should be a valuable complement to genome-scale experimental studies of protein-protein interactions.
Collapse
Affiliation(s)
- Shoshana J Wodak
- Service de Conformation de macromolecules Biologique et Bioinformatique, Centre de Biologie Structurale et Bioinformatique, Université Libre de Bruxelles, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | | |
Collapse
|