1
|
Chen X, Gao Y, Qi Y, Li J, Hu TY, Chen Z, Zhu JJ. Label-Free Raman Probing of the Intrinsic Electric Field for High-Efficiency Screening of Electricity-Producing Bacteria at the Single-Cell Level. Angew Chem Int Ed Engl 2025; 64:e202416011. [PMID: 39439277 DOI: 10.1002/anie.202416011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The fabrication of high-performance microbial fuel cells requires the evaluation of the activity of electrochemically active bacteria. However, this is challenging because of the time-consuming nature of biofilm formation and the invasive nature of labeling. To address this issue, we developed a fast, label-free, single-cell Raman spectroscopic method. This method involves investigating the "pure" linear Stark effect of endogenous CO in the silent region of biological samples, which allows for probing the intrinsic electric field in the outer-membrane cytochromes of live bacterial cells. We found that reduced outer-membrane cytochromes can generate an additional intrinsic electric field equivalent to an applied potential of +0.29 V. We also found that the higher the electrical activity of the cell, the larger the generated electric field. This was also reflected in the output current of the constructed microbial fuel cells. Raman spectroscopy was employed to facilitate the assessment of electrochemical activity at the single-cell level in highly-diluted bacterial samples. After analysis, inactive bacteria were ablated by laser heating, and 20 active cells were cultured for further testing. The rapid and high-throughput probing of the intrinsic electric field offers a promising platform for high-efficiency screening of electrochemically active bacterial cells for bioenergetic and photosynthetic research.
Collapse
Affiliation(s)
- Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Center for Cellular and Molecular Diagnostics and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA-70112, US
| | - Yan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yongbing Qi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jinxiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA-70112, US
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | |
Collapse
|
2
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
3
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598880. [PMID: 38915670 PMCID: PMC11195253 DOI: 10.1101/2024.06.13.598880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on (i) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer (PeT) and (ii) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in MSgg), 127 mV (in M9) and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population level MP heterogeneity of ~6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Evan W. Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, CA 94720, USA
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
4
|
Yang Z, Li Z, Zhu K, Zhou J, Lin H, Zhou J. Pre-anoxic electro-stimulation enhanced simultaneous nitrification-denitrification in single-stage electrolysis-integrated sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 412:131412. [PMID: 39226944 DOI: 10.1016/j.biortech.2024.131412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Simultaneous nitrification-denitrification (SND) is a promising nitrogen removal process. However, total nitrogen (TN) removal is limited due to unsatisfactory denitrification. This study demonstrated that short-time (1 h) pre-anoxic electro-stimulation significantly enhanced SND efficiency in the aerobic phase by promoting the proliferation of mixotrophic and heterotrophic denitrifiers. SND and TN removal efficiencies at the optimal electric current (EC) (0.02 A) were 85.6 % and 93.9 %, which were 39.1 % and 17.2 % higher than control. Microbial community analysis indicated that the abundance of mixotrophic and heterotrophic denitrifiers significantly increased. H2 generated in the electro-stimulation process induced the proliferation of mixotrophic denitrifiers. The weak EC (0.02 A) promoted the activity and growth of heterotrophic denitrifiers by accelerating electron transfer. They concurrently mediated heterotrophic denitrification to enhance SND efficiency. PICRUSt2 analysis revealed that the abundance of denitrifying genes dramatically surged. This study provides new insights into applying electrolysis to achieve advanced SND while minimizing electricity consumption.
Collapse
Affiliation(s)
- Zhi Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zhigang Li
- Southwest Municipal Engineering Design & Research Institute of China, Chengdu 610213, China
| | - Kun Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hong Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Dai Y, Zhou Z, Yu W, Ma Y, Kim K, Rivera N, Mohammed J, Lantelme E, Hsu-Kim H, Chilkoti A, You L. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024; 187:5951-5966.e18. [PMID: 39260373 PMCID: PMC11490381 DOI: 10.1016/j.cell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Gao Y, Wu J, Xia Q, Liu J, Zhu JJ, Zhang JR, Chen X, Zhu W, Chen Z. Operando Spectroscopic Elucidation of the Bubble Sunshade Effect in Inorganic-Biological Hybrids for Photosynthetic Hydrogen Production. ACS NANO 2024; 18:14546-14557. [PMID: 38776420 DOI: 10.1021/acsnano.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them. By quantifying the spectral shift in the structural color scattering of individual PBSs during the photosynthetic process, we observe the accumulation of product hydrogen bubbles on their outer membrane. These bubbles act as a sunshade and inhibit light absorption. This phenomenon elucidates the intrinsic constraints on the light-harvesting efficiency of PBSs. The introduction of a tension eliminator into the PBSs effectively improves the bubble sunshade effect and results in a 4.5-fold increase in the light-harvesting efficiency. This work provides valuable insights into the dynamics of transmembrane transport gas products and holds the potential to inspire innovative designs for improving the light-harvesting efficiency of PBSs.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jingyu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Juan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jian-Rong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xueqin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zixuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
7
|
Zhao J, Gao T. Genetic Engineering of Microorganisms with Electroactive Genes for the Fabrication of Electrochemical Microbial Biosensors. Methods Mol Biol 2024; 2844:247-260. [PMID: 39068345 DOI: 10.1007/978-1-0716-4063-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
By integrating electroactive genes into engineered sensing microorganisms, information about the object to be measured can be converted into the output of an electrical signal, omitting the process of converting the output of an electrical signal in conventional sensing strategies and simplifying the steps of biosensor development. By utilizing synthetic biology methods, we can not only create novel genetic circuits by using logic gate operations and integrating genes from other biological components, solving biosensing issues in living systems and enhancing sensor performance, but also convert various types of genetic circuits into electrical signals, broadening the application range of biosensors. Here, we describe an example of how to genetically engineer microorganisms with electroactive genes and the fabrication of an electrochemical microbial biosensor.
Collapse
Affiliation(s)
- Jinming Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China.
| |
Collapse
|
8
|
Felczak MM, Bernard MP, TerAvest MA. Respiration is essential for aerobic growth of Zymomonas mobilis ZM4. mBio 2023; 14:e0204323. [PMID: 37909744 PMCID: PMC10746213 DOI: 10.1128/mbio.02043-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE A key to producing next-generation biofuels is to engineer microbes that efficiently convert non-food materials into drop-in fuels, and to engineer microbes effectively, we must understand their metabolism thoroughly. Zymomonas mobilis is a bacterium that is a promising candidate biofuel producer, but its metabolism remains poorly understood, especially its metabolism when exposed to oxygen. Although Z. mobilis respires with oxygen, its aerobic growth is poor, and disruption of genes related to respiration counterintuitively improves aerobic growth. This unusual result has sparked decades of research and debate regarding the function of respiration in Z. mobilis. Here, we used a new set of mutants to determine that respiration is essential for aerobic growth and likely protects the cells from damage caused by oxygen. We conclude that the respiratory pathway of Z. mobilis should not be deleted from chassis strains for industrial production because this would yield a strain that is intolerant of oxygen, which is more difficult to manage in industrial settings.
Collapse
Affiliation(s)
- Magdalena M. Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Matthew P. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Enright AL, Banta AB, Ward RD, Rivera Vazquez J, Felczak MM, Wolfe MB, TerAvest MA, Amador-Noguez D, Peters JM. The genetics of aerotolerant growth in an alphaproteobacterium with a naturally reduced genome. mBio 2023; 14:e0148723. [PMID: 37905909 PMCID: PMC10746277 DOI: 10.1128/mbio.01487-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The inherent complexity of biological systems is a major barrier to our understanding of cellular physiology. Bacteria with markedly fewer genes than their close relatives, or reduced genome bacteria, are promising biological models with less complexity. Reduced genome bacteria can also have superior properties for industrial use, provided the reduction does not overly restrict strain robustness. Naturally reduced genome bacteria, such as the alphaproteobacterium Zymomonas mobilis, have fewer genes but remain environmentally robust. In this study, we show that Z. mobilis is a simplified genetic model for Alphaproteobacteria, a class with important impacts on the environment, human health, and industry. We also identify genes that are only required in the absence of atmospheric oxygen, uncovering players that maintain and utilize the cellular energy state. Our findings have broad implications for the genetics of Alphaproteobacteria and industrial use of Z. mobilis to create biofuels and bioproducts.
Collapse
Affiliation(s)
- Amy L. Enright
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Magdalena M. Felczak
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael B. Wolfe
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michaela A. TerAvest
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Wang K, Du W, Liu Z, Liu R, Guan Q, He L, Zhou H. Extracellular electron transfer for aerobic denitrification mediated by the bioelectric catalytic system with zero-carbon source. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115691. [PMID: 37979359 DOI: 10.1016/j.ecoenv.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The slow rate of electron transfer and the large consumption of carbon sources are technical bottlenecks in the biological treatment of wastewater. Here, we first proposed to domesticate aerobic denitrifying bacteria (ADB) from heterotrophic to autotrophic by electricity (0.6 V) under zero organic carbon source conditions, to accelerate electron transfer and shorten hydraulic retention time (HRT) while increasing the biodegradation rate. Then we investigated the extracellular electron transfer (EET) mechanism mediated by this process, and additionally examined the integrated nitrogen removal efficiency of this system with composite pollution. It was demonstrated that compared with the traditional membrane bioreactor (MBR), the BEC displayed higher nitrogen removal efficiency. Especially at C/N = 0, the BEC exhibited a NO3--N removal rate of 95.42 ± 2.71 % for 4 h, which was about 6.5 times higher than that of the MBR. Under the compound pollution condition, the BEC still maintained high NO3--N and tetracycline removal (94.52 ± 2.01 % and 91.50 ± 0.001 %), greatly superior to the MBR (10.64 ± 2.01 % and 12.00 ± 0.019 %). In addition, in-situ electrochemical tests showed that the nitrate in the BEC could be directly converted to N2 by reduction using electrons from the cathode, which was successfully demonstrated as a terminal electron acceptor.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Du
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Runhang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
11
|
Dai Y, Zhou Z, Kim K, Rivera N, Mohammed J, Hsu-Kim H, Chilkoti A, You L. Global control of cellular physiology by biomolecular condensates through modulation of electrochemical equilibria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563018. [PMID: 37904914 PMCID: PMC10614965 DOI: 10.1101/2023.10.19.563018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here we show that the formation of biomolecular condensates can modulate the electrochemical environment in cells, which affects processes globally within the cell and interactions of the cell with its environment. Condensate formation results in the depletion or enrichment of certain ions, generating intracellular ion gradients. These gradients directly affect the electrochemical properties of a cell, including the cytoplasmic pH and hyperpolarization of the membrane potential. The modulation of the electrochemical equilibria between the intra- and extra-cellular environments by biomolecular condensates governs charge-dependent uptake of small molecules by cells, and thereby directly influences bacterial survival under antibiotic stress. The shift of the intracellular electrochemical equilibria by condensate formation also drives a global change of the gene expression profile. The control of the cytoplasmic environment by condensates is correlated with their volume fraction, which can be highly variable between cells due to the stochastic nature of gene expression at the single cell level. Thus, condensate formation can amplify cell-cell variability of the environmental effects induced by the shift of cellular electrochemical equilibria. Our work reveals new biochemical functions of condensates, which extend beyond the biomolecules driving and participating in condensate formation, and uncovers a new role of biomolecular condensates in cellular regulation.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, 63130
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC, 27705
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
12
|
Xia Q, Liu R, Chen X, Chen Z, Zhu JJ. In Vivo Voltammetric Imaging of Metal Nanoparticle-Catalyzed Single-Cell Electron Transfer by Fermi Level-Responsive Graphene. RESEARCH (WASHINGTON, D.C.) 2023; 6:0145. [PMID: 37223464 PMCID: PMC10200910 DOI: 10.34133/research.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Metal nanomaterials can facilitate microbial extracellular electron transfer (EET) in the electrochemically active biofilm. However, the role of nanomaterials/bacteria interaction in this process is still unclear. Here, we reported the single-cell voltammetric imaging of Shewanella oneidensis MR-1 at the single-cell level to elucidate the metal-enhanced EET mechanism in vivo by the Fermi level-responsive graphene electrode. Quantified oxidation currents of ~20 fA were observed from single native cells and gold nanoparticle (AuNP)-coated cells in linear sweep voltammetry analysis. On the contrary, the oxidation potential was reduced by up to 100 mV after AuNP modification. It revealed the mechanism of AuNP-catalyzed direct EET decreasing the oxidation barrier between the outer membrane cytochromes and the electrode. Our method offered a promising strategy to understand the nanomaterials/bacteria interaction and guide the rational construction of EET-related microbial fuel cells.
Collapse
Affiliation(s)
- Qing Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Rui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, P. R. China
| |
Collapse
|
13
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Gu Y, Qi X, Yang X, Jiang Y, Liu P, Quan X, Liang P. Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: A bottom-up analysis of existing knowledge. WATER RESEARCH 2023; 231:119630. [PMID: 36689883 DOI: 10.1016/j.watres.2023.119630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/14/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial extracellular electron transfer (EET) plays a crucial role in bioenergy production and resource recovery from wastewater. Interdisciplinary efforts have been made to unveil EET processes at various spatial scales, from nanowires to microbial aggregates. Electrical conductivity has been frequently measured as an indicator of EET efficiency. In this review, the conductivity of nanowires, biofilms, and granular sludge was summarized, and factors including subjects, measurement methods, and conducting conditions that affect the conductivity difference were discussed in detail. The high conductivity of nanowires does not necessarily result in efficient EET in microbial aggregates due to the existence of non-conductive substances and contact resistance. Improving the conductivity measurement of microbial aggregates is important because it enables the calculation of an EET flux from conductivity and a comparison of the flux with mass transfer coefficients. This review provides new insight into the significance, characterization, and optimization of EET in microbial aggregates during a wastewater treatment process.
Collapse
Affiliation(s)
- Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 USA
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
15
|
Makino D, Ueki A, Matsumoto H, Nagamine K. Minimally invasive current-controlled electrical stimulation system for bacteria using highly capacitive conducting polymer-modified electrodes. Bioelectrochemistry 2023; 149:108290. [DOI: 10.1016/j.bioelechem.2022.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
16
|
Liu YN, Lv ZT, Lv WL, Liu DF, Liu XW. Label-Free Optical Imaging of the Electron Transfer in Single Live Microbial Cells. NANO LETTERS 2023; 23:558-566. [PMID: 36594792 DOI: 10.1021/acs.nanolett.2c04018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Measurement of electron transfer at the single-particle or -cell level is crucial to the in situ study of basic chemical and biological processes. However, it remains challenging to directly probe the microbial extracellular electron transfer process due to the weakness of signals and the lack of techniques. Here, we present a label-free and noninvasive imaging method that is able to measure the electron transfer in microbial cells. We measured the extracellular electron transfer processes by imaging the redox reaction of c-type outer membrane cytochromes in microbial cells using a plasmonic imaging technique, and obtained the electrochemical activity parameters (formal potential and number of electrons transferred) of multiple individual microbial cells, allowing for unveiling ample heterogeneities in electron transfer at the single-cell level. We anticipate that this method will contribute to the study of electron transfer in various biological and chemical processes.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Zhen-Ting Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Dong-Feng Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
17
|
Tang Z, Liu R, Chen X, Gao D, Zhang JR, Zhu JJ, Chen Z. Plasmonic Probing Single-Cell Bio-Current Waves with a Shrinking Magnetite Nanoprobe. ACS NANO 2022; 16:20842-20850. [PMID: 36475619 DOI: 10.1021/acsnano.2c08223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Probing of the single-cell level extracellular electron transfer highlights the maximum output current for microbial fuel cells (MFCs) at hundreds of femtoampere per cell, which is difficult to achieve by existing devices. Past studies focus on the external factors for boosting charge-extraction efficiency from bacteria. Here, we elucidate the intracellular factors that determine this output limit by monitoring the respiratory-driven shrinking kinetics of a single magnetite nanoprobe immobilized on a single Shewanella oneidensis MR-1 cell with plasmonic imaging. Quantified dissolving of nanoprobes unveils a previously undescribed bio-current fluctuation between 0 and 2.7 fA on a ∼40 min cycle. Simultaneously tracing of endogenous oscillations indicates that the bio-current waves are correlated with the periodic cellular electrokinesis. The unsynchronized electron transfer capability in the cell population results in the mean current of 0.24 fA per cell, significantly smaller than in single cells. It explains why the averaged output current of MFCs cannot reach the measured single-cell currents. This work offers a different perspective to improve the power output by extending the active episodes of the bio-current waves.
Collapse
Affiliation(s)
- Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Di Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
- Shenzhen Research Institute of Nanjing University, Shenzhen518000, People's Republic of China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, People's Republic of China
| |
Collapse
|
18
|
Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS MEASUREMENT SCIENCE AU 2022; 2:517-541. [PMID: 36573075 PMCID: PMC9783092 DOI: 10.1021/acsmeasuresciau.2c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/17/2023]
Abstract
The coupling of enzymes and/or intact bacteria with electrodes has been vastly investigated due to the wide range of existing applications. These span from biomedical and biosensing to energy production purposes and bioelectrosynthesis, whether for theoretical research or pure applied industrial processes. Both enzymes and bacteria offer a potential biotechnological alternative to noble/rare metal-dependent catalytic processes. However, when developing these biohybrid electrochemical systems, it is of the utmost importance to investigate how the approaches utilized to couple biocatalysts and electrodes influence the resulting bioelectrocatalytic response. Accordingly, this tutorial review starts by recalling some basic principles and applications of bioelectrochemistry, presenting the electrode and/or biocatalyst modifications that facilitate the interaction between the biotic and abiotic components of bioelectrochemical systems. Focus is then directed toward the methods used to evaluate the effectiveness of enzyme/bacteria-electrode interaction and the insights that they provide. The basic concepts of electrochemical methods widely employed in enzymatic and microbial electrochemistry, such as amperometry and voltammetry, are initially presented to later focus on various complementary methods such as spectroelectrochemistry, fluorescence spectroscopy and microscopy, and surface analytical/characterization techniques such as quartz crystal microbalance and atomic force microscopy. The tutorial review is thus aimed at students and graduate students approaching the field of enzymatic and microbial electrochemistry, while also providing a critical and up-to-date reference for senior researchers working in the field.
Collapse
Affiliation(s)
- Giada Bedendi
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Selmihan Sahin
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
19
|
Fang C, Li J, Feng Z, Li X, Cheng M, Qiao Y, Hu W. Spatiotemporal Mapping of Extracellular Electron Transfer Flux in a Microbial Fuel Cell Using an Oblique Incident Reflectivity Difference Technique. Anal Chem 2022; 94:10841-10849. [PMID: 35863931 DOI: 10.1021/acs.analchem.2c01912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular electron transfer (EET) is a critical process involved in microbial fuel cells. Spatially resolved mapping of EET flux is of essential significance due to the inevitable spatial inhomogeneity over the bacteria/electrode interface. In this work, EET flux of a typical bioanode constructed by inhabiting Shewanella putrefaciens CN32 on a porous polyaniline (PANI) film was successfully mapped using a newly established oblique incident reflectivity difference (OIRD) technique. In the open-circuit state, the PANI film was reduced by the electrons released from the bacteria via the EET process, and the resultant redox state change of PANI was sensitively imaged by OIRD in a real-time and noninvasive manner. Due to the strong correlation between the EET flux and OIRD signal, the OIRD differential image represents spatially resolved EET flux, and the in situ OIRD signal reveals the dynamic behavior during the EET process, thus providing important spatiotemporal information complementary to the bulky electrochemical data.
Collapse
Affiliation(s)
- Changxiang Fang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Junying Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhihao Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyi Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Min Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Yan Qiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
20
|
Teel HR, Likit-Anurak K, Shimpalee S, Turick CE. Imaginary admittance and charge transfer resistance correlate to the physiological status of Shewanella oneidensis cultures in real time. Bioelectrochemistry 2022; 147:108210. [PMID: 35872371 DOI: 10.1016/j.bioelechem.2022.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Monitoring microbial activity is essential for industrial and environmental applications to proceed efficiently. To minimize time and labor-intensive monitoring, a new paradigm is required for in-situ, real time analysis. Since bioconversion of organics is accomplished by microorganisms through the oxidation of feedstocks linked to the reduction of electron acceptors, microorganisms can be viewed as electrochemical catalysts. In this respect, cell membranes have an electrical potential, which is analogous to a conventional capacitor and linked dynamically to cellular activity. Here we demonstrate the use of electrochemical impedance spectrometry (EIS) and cyclic voltammetry (CV) for monitoring microbial metabolic activity in real time, in-situ. The effect of organic electron donors as a function of concentration to the physiological status of strains of Shewanella oneidensis was determined. In this study, the pyomelanin overproducer (S. oneidensis ΔhmgA) and the pyomelanin deficient mutant (S. oneidensis ΔmelA) were chosen due to different surface electrochemical characteristics along with differences in oxygen utilization efficiency. CV, relative admittance, phase shift and permittivity changed with growth status and correlated with electron flow from organic carbon sources and terminal electron acceptor availability. This work offers a novel and inexpensive approach to real time monitoring with the advantage of abundant data.
Collapse
Affiliation(s)
| | | | | | - Charles E Turick
- ElectroBioDyne LLC, Aiken, SC, USA; Savannah River National Lab., Aiken, SC 29803.
| |
Collapse
|
21
|
Lee H, Bae J, Jin S, Kang S, Cho BK. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Front Microbiol 2022; 13:865168. [PMID: 35615514 PMCID: PMC9124964 DOI: 10.3389/fmicb.2022.865168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
C1 gases, including carbon dioxide (CO2) and carbon monoxide (CO), are major contributors to climate crisis. Numerous studies have been conducted to fix and recycle C1 gases in order to solve this problem. Among them, the use of microorganisms as biocatalysts to convert C1 gases to value-added chemicals is a promising solution. Acetogenic bacteria (acetogens) have received attention as high-potential biocatalysts owing to their conserved Wood–Ljungdahl (WL) pathway, which fixes not only CO2 but also CO. Although some metabolites have been produced via C1 gas fermentation on an industrial scale, the conversion of C1 gases to produce various biochemicals by engineering acetogens has been limited. The energy limitation of acetogens is one of the challenges to overcome, as their metabolism operates at a thermodynamic limit, and the low solubility of gaseous substrates results in a limited supply of cellular energy. This review provides strategies for developing efficient platform strains for C1 gas conversion, focusing on engineering the WL pathway. Supplying liquid C1 substrates, which can be obtained from CO2, or electricity is introduced as a strategy to overcome the energy limitation. Future prospective approaches on engineering acetogens based on systems and synthetic biology approaches are also discussed.
Collapse
Affiliation(s)
- Hyeonsik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Byung-Kwan Cho,
| |
Collapse
|
22
|
Comerci CJ, Gillman AL, Galera-Laporta L, Gutierrez E, Groisman A, Larkin JW, Garcia-Ojalvo J, Süel GM. Localized electrical stimulation triggers cell-type-specific proliferation in biofilms. Cell Syst 2022; 13:488-498.e4. [PMID: 35512710 PMCID: PMC9233089 DOI: 10.1016/j.cels.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023]
Abstract
Biological systems ranging from bacteria to mammals utilize electrochemical signaling. Although artificial electrochemical signals have been utilized to characterize neural tissue responses, the effects of such stimuli on non-neural systems remain unclear. To pursue this question, we developed an experimental platform that combines a microfluidic chip with a multielectrode array (MiCMA) to enable localized electrochemical stimulation of bacterial biofilms. The device also allows for the simultaneous measurement of the physiological response within the biofilm with single-cell resolution. We find that the stimulation of an electrode locally changes the ratio of the two major cell types comprising Bacillus subtilis biofilms, namely motile and extracellular-matrix-producing cells. Specifically, stimulation promotes the proliferation of motile cells but not matrix cells, even though these two cell types are genetically identical and reside in the same microenvironment. Our work thus reveals that an electronic interface can selectively target bacterial cell types, enabling the control of biofilm composition and development.
Collapse
Affiliation(s)
- Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alan L Gillman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph W Larkin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Gagkayeva ZV, Gorshunov BP, Kachesov AY, Motovilov KA. Infrared fingerprints of water collective dynamics indicate proton transport in biological systems. Phys Rev E 2022; 105:044409. [PMID: 35590571 DOI: 10.1103/physreve.105.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Recent publications on spectroscopy of water layers in water bridge structures revealed a significant enhancement of the proton mobility and the dielectric contribution of translational vibrations of water molecules in the interfacial layers compared to bulk water. Herewith, the results of long-term studies of proton dynamics in solid-state acids have shown that proton mobility increases significantly with the predominance of hydronium, but not Zundel, cations in the aqueous phase. In the present work, in the light of these data, we reanalyzed our previously published results on broadband dielectric spectroscopy of bovine heart cytochrome c, bovine serum albumin, and the extracellular matrix and filaments of Shewanella oneidensis MR-1. We revealed that, just as in water bridges, an increase in electrical conductivity in these systems correlates with an increase in the dielectric contribution of water molecular translational vibrations. In addition, the appearance of spectral signatures of the hydronium cations was observed only in those cases when the system revealed noticeable electrical conductivity due to delocalized charge carriers.
Collapse
Affiliation(s)
- Z V Gagkayeva
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - B P Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - A Ye Kachesov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| |
Collapse
|
24
|
Graham AJ, Gibbs SL, Saez Cabezas CA, Wang Y, Green AM, Milliron DJ, Keitz BK. In Situ
Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals**. ChemElectroChem 2022. [DOI: 10.1002/celc.202101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Austin J. Graham
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Stephen L. Gibbs
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
| | - Camila A. Saez Cabezas
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Yongdan Wang
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
| | - Allison M. Green
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Delia J. Milliron
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| |
Collapse
|
25
|
Li C, Li Z, Zeng Y, Cao X, Zhao H, Yang YY, Yuan P, Lu X, Ding X. Co 3 O 4 Nanowires Capable of Discharging Low Voltage Electricity Showing Potent Antibacterial Activity for Treatment of Bacterial Skin Infection. Adv Healthc Mater 2022; 11:e2102044. [PMID: 34725946 DOI: 10.1002/adhm.202102044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Indexed: 11/11/2022]
Abstract
Overuse of antibiotics has led to multidrug resistance in bacteria, posing a tremendous challenge to the healthcare system. There is an urgent need to explore unconventional strategies to overcome this issue. Herein, for the first time, we report a capacitive Co3 O4 nanowire (NW) electrode coated on flexible carbon cloth, which is capable of eliminating bacteria while discharging, for the treatment of skin infection. Benefiting from the unique NW-like morphology, the Co3 O4 NW electrode with increased active sites and enhanced capacitive property exhibits a prominent antibacterial effect against both Gram-positive and Gram-negative bacteria after charging at a low voltage of 2 V for 30 min. Furthermore, the electrode is demonstrated to be recharged for multiple antibacterial treatment cycles without significant change of antibacterial activity, allowing for practical use in a non-clinical setting. More importantly, this Co3 O4 NW electrode is capable of damaging bacterial cell membrane and inducing the accumulation of intracellular reactive oxygen species without impairing viability of skin keratinocytes. In a mouse model of bacterial skin infection, the Co3 O4 electrode shows significant therapeutic efficacy by eradicating colonized bacteria, thus accelerating the healing process of infected wounds. This nanostructured capacitive electrode provides an antibiotic-free, rechargeable, and wearable approach to treat bacterial skin infection.
Collapse
Affiliation(s)
- Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Yinxiang Zeng
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong Province MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Xianshuo Cao
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong Province MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Xihong Lu
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong Province MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| |
Collapse
|
26
|
Chen Z, Zhang F, Li Y, Shan J, Lu Y, Liu Q. Bio-electron transfer modulated localized surface plasmon resonance biosensing with charge density monitoring. Biosens Bioelectron 2022; 201:113956. [PMID: 34998117 DOI: 10.1016/j.bios.2021.113956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
The analysis of reactant at different regions of the bioreaction interface is significant for the study on the influence of interface condition on bioreaction. In this study, we proposed a localized surface plasmon resonance (LSPR) biosensing platform for local charge density monitoring and corresponding analytes detection based on the bio-electron transfer modulation of plasmon resonance. Core-shell nanocomposites of polyaniline coated gold nanoparticles were synthesized for the enhanced sensitivity of plasmon resonance to applied electric potential. Tin-doped indium oxide (ITO) substrates modified with the nanocomposites were used as LSPR chip for optical and electrochemical measurements simultaneously. The charge sensitivity of LSPR was verified with external electric potential modulation theoretically and experimentally. Through layer-by-layer self-assembly immobilization of glucose oxidase (GOD) on the LSPR chips, the charge transfer monitoring during the bioreaction of glucose catalysis was further demonstrated based on the bio-electron transfer modulation of LSPR. By equivalent circuit method, the charge density of the LSPR chip were detected with optical extinction peak shifts, and the limit of detection was about 0.51 μC/cm2. This bio-electron transfer modulated LSPR provides a promising approach for the detection of spatial charge densities and the evaluation of bioreaction substances at different region of single chip.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yaru Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jianzhen Shan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, PR China.
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, PR China
| |
Collapse
|
27
|
Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst 2021; 147:22-34. [PMID: 34874024 PMCID: PMC8791413 DOI: 10.1039/d1an01954f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.
Collapse
Affiliation(s)
- Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
28
|
Zhang YT, Zhang Y, Peng L. Electrochemical fluorescence microscopy reveals insignificant long-range extracellular electron transfer in Shewanella oneidensis anodic processes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
30
|
Kuruvinashetti K, Kornienko N. Pushing the methodological envelope in understanding the photo/electrosynthetic materials-microorganism interface. iScience 2021; 24:103049. [PMID: 34553134 PMCID: PMC8441150 DOI: 10.1016/j.isci.2021.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biohybrid photo/electrosynthetic systems synergize microbial metabolic pathways and inorganic materials to generate the fuels and chemicals to power our society. They aim to combine the strengths of product selectivity from biological cells and efficient charge generation and light absorption of inorganic materials. However crucial mechanistic questions still remain. In this review we address significant knowledge gaps that must be closed and recent efforts to do so to push biohybrid systems closer to applicability. In particular, we focus on noteworthy advances that have recently been made in applying state-of-the-art analytical spectroscopic, electrochemical, and microelectronic techniques to help pinpoint key complexities of the microbe-materials interface. We discuss the basic function of these techniques, how they have been translated over to study biohybrid systems, and which key insights and implications have been extracted. Finally, we delve into the key advances necessary for the design of next generation biohybrid energy conversion systems.
Collapse
Affiliation(s)
- Kiran Kuruvinashetti
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - Nikolay Kornienko
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| |
Collapse
|
31
|
Cestellos-Blanco S, Kim JM, Watanabe NG, Chan RR, Yang P. Molecular insights and future frontiers in cell photosensitization for solar-driven CO 2 conversion. iScience 2021; 24:102952. [PMID: 34458701 PMCID: PMC8379512 DOI: 10.1016/j.isci.2021.102952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The conversion of CO2 to value-added products powered with solar energy is an ideal solution to establishing a closed carbon cycle. Combining microorganisms with light-harvesting nanomaterials into photosynthetic biohybrid systems (PBSs) presents an approach to reaching this solution. Metabolic pathways precisely evolved for CO2 fixation selectively and reliably generate products. Nanomaterials harvest solar light and biocompatibly associate with microorganisms owing to similar lengths scales. Although this is a nascent field, a variety of approaches have been implemented encompassing different microorganisms and nanomaterials. To advance the field in an impactful manner, it is paramount to understand the molecular underpinnings of PBSs. In this perspective, we highlight studies inspecting charge uptake pathways and singularities in photosensitized cells. We discuss further analyses to more completely elucidate these constructs, and we focus on criteria to be met for designing photosensitizing nanomaterials. As a result, we advocate for the pairing of microorganisms with naturally occurring and highly biocompatible mineral-based semiconductor nanomaterials.
Collapse
Affiliation(s)
| | - Ji Min Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | | | | | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, CA, USA
| |
Collapse
|
32
|
Xia Q, Chen X, Liu C, Song RB, Chen Z, Zhang J, Zhu JJ. Label-Free Probing of Electron Transfer Kinetics of Single Microbial Cells on a Single-Layer Graphene via Structural Color Microscopy. NANO LETTERS 2021; 21:7823-7830. [PMID: 34470209 DOI: 10.1021/acs.nanolett.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies of electron transfer at the population level veil the nature of the cell itself; however, in situ probing of the electron transfer dynamics of individual cells is still challenging. Here we propose label-free structural color microscopy for this aim. We demonstrate that Shewanella oneidensis MR-1 cells show unique structural color scattering, changing with the redox state of cytochrome complexes in the outer membrane. It enables quantitatively and noninvasive studies of electron transfer in single microbial cells during bioelectrochemical activities, such as extracellular electron transfer (EET) on a transparent single-layer graphene electrode. Increasing the applied potential leads to the associated EET current, accompanied by more oxidized cytochromes. The high spatiotemporal resolution of the proposed method not only demonstrates the large diversity in EET activity among microbial cells but also reveals the subcellular asymmetric distribution of active cytochromes in a single cell. We anticipate that it provides a potential platform for further exploring the electron transfer mechanism of subcellular structure.
Collapse
Affiliation(s)
- Qing Xia
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Xueqin Chen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Changhong Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, PR China
| | - Rong-Bin Song
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Zixuan Chen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Jianrong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| |
Collapse
|
33
|
Nath D, Das S, Ghangrekar MM. High throughput techniques for the rapid identification of electroactive microorganisms. CHEMOSPHERE 2021; 285:131489. [PMID: 34265713 DOI: 10.1016/j.chemosphere.2021.131489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023]
Abstract
Electroactive microorganisms (EAM), capable of executing extracellular electron transfer (EET) in/out of a cell, are employed in microbial electrochemical technologies (MET) and bioelectronics for harnessing electricity from wastewater, bioremediation and as biosensors. Thus, investigation on EAM is becoming a topic of interest for multidisciplinary areas, such as environmental science, energy and health sectors. Though, EAM are widespread in three domains of life, nevertheless, only a few hundred EAM have been identified so far and hence, the rapid identification of EAM is imperative. In this review, the techniques that are developed for the direct identification of EAM, such as azo dye and WO3 based techniques, dielectrophoresis, potentiostatic/galvanometric techniques, and other indirect methods, such as spectroscopy and molecular biology techniques, are highlighted with a special focus on time required for the detection of these EAM. The bottlenecks for identifying EAM and the knowledge gaps based on the present investigations are also discussed. Thus, this review is intended to encourage researchers for devolving high-throughput techniques for identifying EAM with more accuracy, while consuming less time.
Collapse
Affiliation(s)
- Dibyojyoty Nath
- School of Environmental Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- School of Environmental Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
34
|
Duan J, Xu Z, Yang Z, Jiang J. Insight to Microbial Fe(III) Reduction Mediated by Redox-Active Humic Acids with Varied Redox Potentials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136807. [PMID: 34202887 PMCID: PMC8297103 DOI: 10.3390/ijerph18136807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Redox-active humic acids (HA) are ubiquitous in terrestrial and aquatic systems and are involved in numerous electron transfer reactions affecting biogeochemical processes and fates of pollutants in soil environments. Redox-active contaminants are trapped in soil micropores (<2 nm) that have limited access to microbes and HA. Therefore, the contaminants whose molecular structure and properties are not damaged accumulate in the soil micropores and become potential pollution sources. Electron transfer capacities (ETC) of HA reflecting redox activities of low molecular weight fraction (LMWF, <2.5) HA can be detected by an electrochemical method, which is related to redox potentials (Eh) in soil and aquatic environments. Nevertheless, electron accepting capacities (EAC) and electron donating capacities (EDC) of these LMWF HA at different Eh are still unknown. EDC and EAC of different molecular weight HA at different Eh were analyzed using electrochemical methods. EAC of LMWF at -0.59 V was 12 times higher than that at -0.49 V, while EAC increased to 2.6 times when the Eh decreased from -0.59 V to -0.69 V. Afterward, LMWF can act as a shuttle to stimulate microbial Fe(III) reduction processes in microbial reduction experiments. Additionally, EAC by electrochemical analysis at a range of -0.49--0.59 V was comparable to total calculated ETC of different molecular weight fractions of HA by microbial reduction. Therefore, it is indicated that redox-active functional groups that can be reduced at Eh range of -0.49--0.59 are available to microbial reduction. This finding contributes to a novel perspective in the protection and remediation of the groundwater environment in the biogeochemistry process.
Collapse
Affiliation(s)
- Jingtao Duan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; (J.D.); (Z.X.)
| | - Zhiyuan Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; (J.D.); (Z.X.)
| | - Zhen Yang
- College of Urban and Environmental Science, Peking University, Beijing 100871, China;
| | - Jie Jiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; (J.D.); (Z.X.)
- Correspondence:
| |
Collapse
|
35
|
Erben J, Pinder ZA, Lüdtke MS, Kerzenmacher S. Local Acidification Limits the Current Production and Biofilm Formation of Shewanella oneidensis MR-1 With Electrospun Anodes. Front Microbiol 2021; 12:660474. [PMID: 34194407 PMCID: PMC8236948 DOI: 10.3389/fmicb.2021.660474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The anodic current production of Shewanella oneidensis MR-1 is typically lower compared to other electroactive bacteria. The main reason for the low current densities is the poor biofilm growth on most anode materials. We demonstrate that the high current production of Shewanella oneidensis MR-1 with electrospun anodes exhibits a similar threshold current density as dense Geobacter spp biofilms. The threshold current density is a result of local acidification in the biofilm. Increasing buffer concentration from 10 to 40 mM results in a 1.8-fold increase of the current density [(590 ± 25) μA cm−2] while biofilm growth stimulation by riboflavin has little effect on the current production. The current production of a reference material below the threshold did not respond to the increased buffer concentration but could be enhanced by supplemented riboflavin that stimulated the biofilm growth. Our results suggest that the current production with S. oneidensis is limited (1) by the biofilm growth on the anode that can be enhanced by the choice of the electrode material, and (2) by the proton transport through the biofilm and the associated local acidification.
Collapse
Affiliation(s)
- Johannes Erben
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | | | - Malte S Lüdtke
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| |
Collapse
|
36
|
Abstract
Bacteria are electrically powered organisms; cells maintain an electrical potential across their plasma membrane as a source of free energy to drive essential processes. In recent years, however, bacterial membrane potential has been increasingly recognized as dynamic. Those dynamics have been implicated in diverse physiological functions and behaviors, including cell division and cell-to-cell signaling. In eukaryotic cells, such dynamics play major roles in coupling bioelectrical stimuli to changes in internal cell states. Neuroscientists and physiologists have established detailed molecular pathways that transduce eukaryotic membrane potential dynamics to physiological and gene expression responses. We are only just beginning to explore these intracellular responses to bioelectrical activity in bacteria. In this review, we summarize progress in this area, including evidence of gene expression responses to stimuli from electrodes and mechanically induced membrane potential spikes. We argue that the combination of provocative results, missing molecular detail, and emerging tools makes the investigation of bioelectrically induced long-term intracellular responses an important and rewarding effort in the future of microbiology.
Collapse
Affiliation(s)
- Joshua M Jones
- Department of Biology, Boston University, Boston, Massachusetts, USA.,Department of Physics, Boston University, Boston, Massachusetts, USA.,Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Joseph W Larkin
- Department of Biology, Boston University, Boston, Massachusetts, USA.,Department of Physics, Boston University, Boston, Massachusetts, USA.,Biological Design Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Erben J, Wang X, Kerzenmacher S. High Current Production of
Shewanella Oneidensis
with Electrospun Carbon Nanofiber Anodes is Directly Linked to Biofilm Formation**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Erben
- Center for Environmental Research and Sustainable Technology (UFT) University of Bremen 28359 Bremen Germany
| | - Xinyu Wang
- Laboratory for MEMS Applications IMTEK – Department of Microsystems Engineering University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT) University of Bremen 28359 Bremen Germany
| |
Collapse
|
38
|
Pyruvate accelerates palladium reduction by regulating catabolism and electron transfer pathway in Shewanella oneidensis. Appl Environ Microbiol 2021; 87:AEM.02716-20. [PMID: 33514518 PMCID: PMC8091111 DOI: 10.1128/aem.02716-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is a model strain of the electrochemical active bacteria (EAB) because of its strong capability of extracellular electron transfer (EET) and genetic tractability. In this study, we investigated the effect of carbon sources on EET in S. oneidensis by using reduction of palladium ions (Pd(II)) as a model and found that pyruvate greatly accelerated the Pd(II) reduction compared with lactate by resting cells. Both Mtr pathway and hydrogenases played a role in Pd(II) reduction when pyruvate was used as a carbon source. Furthermore, in comparison with lactate-feeding S. oneidensis, the transcriptional levels of formate dehydrogenases involving in pyruvate catabolism, Mtr pathway, and hydrogenases in pyruvate-feeding S. oneidensis were up-regulated. Mechanistically, the enhancement of electron generation from pyruvate catabolism and electron transfer to Pd(II) explains the pyruvate effect on Pd(II) reduction. Interestingly, a 2-h time window is required for pyruvate to regulate transcription of these genes and profoundly improve Pd(II) reduction capability, suggesting a hierarchical regulation for pyruvate sensing and response in S. oneidensis IMPORTANCE The unique respiration of EET is crucial for the biogeochemical cycling of metal elements and diverse applications of EAB. Although a carbon source is a determinant factor of bacterial metabolism, the research into the regulation of carbon source on EET is rare. In this work, we reported the pyruvate-specific regulation and improvement of EET in S. oneidensis and revealed the underlying mechanism, which suggests potential targets to engineer and improve the EET efficiency of this bacterium. This study sheds light on the regulatory role of carbon sources in anaerobic respiration in EAB, providing a way to regulate EET for diverse applications from a novel perspective.
Collapse
|