1
|
Gao Q, Fan S, Wang Q, Li J, Ren X, Biało I, Drewanowski A, Rothenbühler P, Choi J, Sutarto R, Wang Y, Xiang T, Hu J, Zhou KJ, Bisogni V, Comin R, Chang J, Pelliciari J, Zhou XJ, Zhu Z. Magnetic excitations in strained infinite-layer nickelate PrNiO 2 films. Nat Commun 2024; 15:5576. [PMID: 38956078 PMCID: PMC11220032 DOI: 10.1038/s41467-024-49940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Strongly correlated materials respond sensitively to external perturbations such as strain, pressure, and doping. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be enhanced via only ~ 1% compressive strain-tuning with the root of such enhancement still being elusive. Using resonant inelastic x-ray scattering (RIXS), we investigate the magnetic excitations in infinite-layer PrNiO2 thin films grown on two different substrates, namely SrTiO3 (STO) and (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) enforcing different strain on the nickelates films. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the bandwidth of spin excitations of the parent compounds is similar under strain while Tc in the doped ones is not, and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates.
Collapse
Affiliation(s)
- Qiang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiyu Fan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Qisi Wang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jiarui Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiaolin Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Izabela Biało
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059, Kraków, Poland
| | - Annabella Drewanowski
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Pascal Rothenbühler
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Ronny Sutarto
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Yao Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29631, USA
| | - Tao Xiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - Jonathan Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA.
| | - X J Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.
| | - Zhihai Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.
| |
Collapse
|
2
|
Chen HY, Versteeg RB, Mankowsky R, Puppin M, Leroy L, Sander M, Deng Y, Oggenfuss RA, Zamofing T, Böhler P, Pradervand C, Mozzanica A, Vetter S, Smolentsev G, Kerkhoff L, Lemke HT, Chergui M, Mancini GF. A setup for hard x-ray time-resolved resonant inelastic x-ray scattering at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024308. [PMID: 38586277 PMCID: PMC10998714 DOI: 10.1063/4.0000236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
We present a new setup for resonant inelastic hard x-ray scattering at the Bernina beamline of SwissFEL with energy, momentum, and temporal resolution. The compact R = 0.5 m Johann-type spectrometer can be equipped with up to three crystal analyzers and allows efficient collection of RIXS spectra. Optical pumping for time-resolved studies can be realized with a broad span of optical wavelengths. We demonstrate the performance of the setup at an overall ∼180 meV resolution in a study of ground-state and photoexcited (at 400 nm) honeycomb 5d iridate α-Li2IrO3. Steady-state RIXS spectra at the iridium L3-edge (11.214 keV) have been collected and are in very good agreement with data collected at synchrotrons. The time-resolved RIXS transients exhibit changes in the energy loss region <2 eV, whose features mostly result from the hopping nature of 5d electrons in the honeycomb lattice. These changes are ascribed to modulations of the Ir-to-Ir inter-site transition scattering efficiency, which we associate to a transient screening of the on-site Coulomb interaction.
Collapse
Affiliation(s)
- Hui-Yuan Chen
- Lausanne Centre for Ultrafast Science (LACUS), ISIC, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rolf B. Versteeg
- Lausanne Centre for Ultrafast Science (LACUS), ISIC, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Roman Mankowsky
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Michele Puppin
- Lausanne Centre for Ultrafast Science (LACUS), ISIC, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Mathias Sander
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Yunpei Deng
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Thierry Zamofing
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Pirmin Böhler
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Claude Pradervand
- Photon Science Division, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Seraphin Vetter
- Photon Science Division, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Grigory Smolentsev
- Energy and Environment Research Division, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Linda Kerkhoff
- Sect. Crystallography, Institute of Geology and Mineralogy, University of Cologne, 50674 Köln, Germany
| | - Henrik T. Lemke
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Majed Chergui
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
3
|
Choi J, Li J, Nag A, Pelliciari J, Robarts H, Tam CC, Walters A, Agrestini S, García-Fernández M, Song D, Eisaki H, Johnston S, Comin R, Ding H, Zhou KJ. Universal Stripe Symmetry of Short-Range Charge Density Waves in Cuprate Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307515. [PMID: 37830432 DOI: 10.1002/adma.202307515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Indexed: 10/14/2023]
Abstract
The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.
Collapse
Affiliation(s)
- Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jiemin Li
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jonathan Pelliciari
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hannah Robarts
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Charles C Tam
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Stefano Agrestini
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | | | - Dongjoon Song
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
| | - Steve Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute for Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
4
|
Arpaia R, Martinelli L, Sala MM, Caprara S, Nag A, Brookes NB, Camisa P, Li Q, Gao Q, Zhou X, Garcia-Fernandez M, Zhou KJ, Schierle E, Bauch T, Peng YY, Di Castro C, Grilli M, Lombardi F, Braicovich L, Ghiringhelli G. Signature of quantum criticality in cuprates by charge density fluctuations. Nat Commun 2023; 14:7198. [PMID: 37938250 PMCID: PMC10632404 DOI: 10.1038/s41467-023-42961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.
Collapse
Affiliation(s)
- Riccardo Arpaia
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden.
| | - Leonardo Martinelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Marco Moretti Sala
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Sergio Caprara
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
- CNR-ISC, via dei Taurini 19, I-00185, Roma, Italy
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Nicholas B Brookes
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Pietro Camisa
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, CN-100871, Beijing, China
| | - Qiang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, CN-100190, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, CN-100190, Beijing, China
| | | | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Enrico Schierle
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489, Berlin, Germany
| | - Thilo Bauch
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Ying Ying Peng
- International Center for Quantum Materials, School of Physics, Peking University, CN-100871, Beijing, China
| | - Carlo Di Castro
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
| | - Marco Grilli
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
- CNR-ISC, via dei Taurini 19, I-00185, Roma, Italy
| | - Floriana Lombardi
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Lucio Braicovich
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Giacomo Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy.
- CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy.
| |
Collapse
|
5
|
Li Q, Huang HY, Ren T, Weschke E, Ju L, Zou C, Zhang S, Qiu Q, Liu J, Ding S, Singh A, Prokhnenko O, Huang DJ, Esterlis I, Wang Y, Xie Y, Peng Y. Prevailing Charge Order in Overdoped La_{2-x}Sr_{x}CuO_{4} beyond the Superconducting Dome. PHYSICAL REVIEW LETTERS 2023; 131:116002. [PMID: 37774302 DOI: 10.1103/physrevlett.131.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 08/24/2023] [Indexed: 10/01/2023]
Abstract
The extremely overdoped cuprates are generally considered to be Fermi liquid metals without exotic orders, whereas the underdoped cuprates harbor intertwined states. Contrary to this conventional wisdom, using Cu L_{3}-edge and O K-edge resonant x-ray scattering, we reveal a charge order (CO) correlation in overdoped La_{2-x}Sr_{x}CuO_{4} (0.35≤x≤0.6) beyond the superconducting dome. This CO has a periodicity of ∼6 lattice units with correlation lengths of ∼20 lattice units. It shows similar in-plane momentum and polarization dependence and dispersive excitations as the CO of underdoped cuprates, but its maximum intensity differs along the c direction and persists up to 300 K. This CO correlation cannot be explained by the Fermi surface instability and its origin remains to be understood. Our results suggest that CO is prevailing in the overdoped metallic regime and requires a reassessment of the picture of overdoped cuprates as weakly correlated Fermi liquids.
Collapse
Affiliation(s)
- Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Hsiao-Yu Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Tianshuang Ren
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Eugen Weschke
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Lele Ju
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Changwei Zou
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Shilong Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qingzheng Qiu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jiarui Liu
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Shuhan Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Amol Singh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | | | - Di-Jing Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ilya Esterlis
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yao Wang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Yanwu Xie
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yingying Peng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
6
|
Scott K, Kisiel E, Boyle TJ, Basak R, Jargot G, Das S, Agrestini S, Garcia-Fernandez M, Choi J, Pelliciari J, Li J, Chuang YD, Zhong R, Schneeloch JA, Gu G, Légaré F, Kemper AF, Zhou KJ, Bisogni V, Blanco-Canosa S, Frano A, Boschini F, da Silva Neto EH. Low-energy quasi-circular electron correlations with charge order wavelength in Bi 2Sr 2CaCu 2O 8+δ. SCIENCE ADVANCES 2023; 9:eadg3710. [PMID: 37467326 DOI: 10.1126/sciadv.adg3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the qx-qy scattering plane in underdoped Bi2Sr2CaCu2O8+δ. Tracking the softening of the RIXS-measured bond-stretching phonon, we show that these dynamic correlations exist at energies below approximately 70 meV and are centered around a quasi-circular manifold in the qx-qy scattering plane with radius equal to the magnitude of the charge order wave vector, qCO. This phonon-tracking procedure also allows us to rule out fluctuations of short-range directional charge order (i.e., centered around [qx = ±qCO, qy = 0] and [qx = 0, qy = ±qCO]) as the origin of the observed correlations.
Collapse
Affiliation(s)
- Kirsty Scott
- Department of Physics, Yale University, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Elliot Kisiel
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Timothy J Boyle
- Department of Physics, Yale University, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Physics and Astronomy, University of California, Davis, CA 95616, USA
| | - Rourav Basak
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gaëtan Jargot
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
| | - Sarmistha Das
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - Jonathan Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jiemin Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ruidan Zhong
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John A Schneeloch
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Genda Gu
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
| | - Alexander F Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Santiago Blanco-Canosa
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alex Frano
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Fabio Boschini
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eduardo H da Silva Neto
- Department of Physics, Yale University, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Physics and Astronomy, University of California, Davis, CA 95616, USA
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y, Zhu J. Correlating the charge-transfer gap to the maximum transition temperature in Bi 2Sr 2Ca n-1Cu nO 2n+4+δ. Science 2023; 381:227-231. [PMID: 37440647 DOI: 10.1126/science.add3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
As the number of CuO2 layers, n, in each unit cell of a cuprate family increases, the maximum transition temperature (Tc,max) exhibits a universal bell-shaped curve with a peak at n = 3. The microscopic mechanism of this trend remains elusive. In this study, we used advanced electron microscopy to image the atomic structure of cuprates in the Bi2Sr2Can-1CunO2n+4+δ family with 1 ≤ n ≤ 9; the evolution of the charge-transfer gap size (Δ) with n can be measured simultaneously. We determined that the n dependence of Δ follows an inverted bell-shaped curve with the minimum Δ value at n = 3. The correlation between Δ, n, and Tc,max may clarify the origin of superconductivity in cuprates.
Collapse
Affiliation(s)
- Zechao Wang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, P.R. China
| | - Changwei Zou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China
| | - Chengtian Lin
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Xiangyu Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongtao Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Chaohui Yin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China
- New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, P.R. China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yayu Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China
- New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, P.R. China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, P.R. China
| |
Collapse
|
8
|
Tseng Y, Paris E, Schmidt KP, Zhang W, Asmara TC, Bag R, Strocov VN, Singh S, Schlappa J, Rønnow HM, Schmitt T. Momentum-resolved spin-conserving two-triplon bound state and continuum in a cuprate ladder. COMMUNICATIONS PHYSICS 2023; 6:138. [PMID: 38665396 PMCID: PMC11041747 DOI: 10.1038/s42005-023-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/23/2023] [Indexed: 04/28/2024]
Abstract
Studying multi-particle elementary excitations has provided unique access to understand collective many-body phenomena in correlated electronic materials, paving the way towards constructing microscopic models. In this work, we perform O K-edge resonant inelastic X-ray scattering (RIXS) on the quasi-one-dimensional cuprate Sr 14 Cu 24 O 41 with weakly-doped spin ladders. The RIXS signal is dominated by a dispersing sharp mode ~ 270 meV on top of a damped incoherent component ~ 400-500 meV. Comparing with model calculations using the perturbative continuous unitary transformations method, the two components resemble the spin-conserving ΔS = 0 two-triplon bound state and continuum excitations in the spin ladders. Such multi-spin response with long-lived ΔS = 0 excitons is central to several exotic magnetic properties featuring Majorana fermions, yet remains unexplored given the generally weak cross-section with other experimental techniques. By investigating a simple spin-ladder model system, our study provides valuable insight into low-dimensional quantum magnetism.
Collapse
Affiliation(s)
- Yi Tseng
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Present Address: Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Eugenio Paris
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Kai P. Schmidt
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7, D-91058 Erlangen, Germany
| | - Wenliang Zhang
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Teguh Citra Asmara
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Rabindranath Bag
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
- Present Address: Department of Physics, Duke University, Durham, NC 27708 USA
| | - Vladimir N. Strocov
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Surjeet Singh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Justine Schlappa
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Henrik M. Rønnow
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thorsten Schmitt
- Photon Science Division, Paul Scherrer Institut, Forschungstrasse 111, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
9
|
Song CL, Main EJ, Simmons F, Liu S, Phillabaum B, Dahmen KA, Hudson EW, Hoffman JE, Carlson EW. Critical nematic correlations throughout the superconducting doping range in Bi 2-zPb zSr 2-yLa yCuO 6+x. Nat Commun 2023; 14:2622. [PMID: 37147296 PMCID: PMC10162959 DOI: 10.1038/s41467-023-38249-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high-Tc superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques. We use a local technique, scanning tunneling microscopy, to image the static charge modulations on Bi2-zPbzSr2-yLayCuO6+x. The ratio of the phase correlation length ξCDW to the orientation correlation length ξorient points to unidirectional charge modulations. By computing new critical exponents at free surfaces including that of the pair connectivity correlation function, we show that these locally 1D charge modulations are actually a bulk effect resulting from classical 3D criticality of the random field Ising model throughout the entire superconducting doping range.
Collapse
Affiliation(s)
- Can-Li Song
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Elizabeth J Main
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Forrest Simmons
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, West Lafayette, IN, 47907, USA
| | - Shuo Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Benjamin Phillabaum
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Karin A Dahmen
- Department of Physics, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Eric W Hudson
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Erica W Carlson
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Quantum Science and Engineering Institute, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Tam CC, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou KJ. Charge density waves in infinite-layer NdNiO 2 nickelates. NATURE MATERIALS 2022; 21:1116-1120. [PMID: 35982306 DOI: 10.1038/s41563-022-01330-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In materials science, much effort has been devoted to the reproduction of superconductivity in chemical compositions, analogous to cuprate superconductors since their discovery over 30 years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates1-6. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest that infinite-layer nickelates have a propensity towards various symmetry-breaking orders that populate cuprates7-10. Here we report the observation of charge density waves (CDWs) in infinite-layer NdNiO2 films using Ni L3 resonant X-ray scattering. Remarkably, CDWs form in Nd 5d and Ni 3d orbitals at the same commensurate wavevector (0.333, 0) reciprocal lattice units, with non-negligible out-of-plane dependence and an in-plane correlation length of up to ~60 Å. Spectroscopic studies reveal a strong connection between CDWs and Nd 5d-Ni 3d orbital hybridization. Upon entering the superconducting state at 20% Sr doping, the CDWs disappear. Our work demonstrates the existence of CDWs in infinite-layer nickelates with a multiorbital character distinct from cuprates, which establishes their low-energy physics.
Collapse
Affiliation(s)
- Charles C Tam
- Diamond Light Source, Didcot, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Jaewon Choi
- Diamond Light Source, Didcot, United Kingdom
| | - Xiang Ding
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Abhishek Nag
- Diamond Light Source, Didcot, United Kingdom
- Laboratory for Non-linear Optics, Paul Scherrer Institut, Villigen, PSI, Switzerland
| | - Mei Wu
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Bing Huang
- Beijing Computational Science Research Center, Beijing, China
| | - Huiqian Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | | | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ke-Jin Zhou
- Diamond Light Source, Didcot, United Kingdom.
| |
Collapse
|
11
|
Zhou KJ, Walters A, Garcia-Fernandez M, Rice T, Hand M, Nag A, Li J, Agrestini S, Garland P, Wang H, Alcock S, Nistea I, Nutter B, Rubies N, Knap G, Gaughran M, Yuan F, Chang P, Emmins J, Howell G. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:563-580. [PMID: 35254322 PMCID: PMC8900866 DOI: 10.1107/s1600577522000601] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/17/2022] [Indexed: 05/27/2023]
Abstract
The I21 beamline at Diamond Light Source is dedicated to advanced resonant inelastic X-ray scattering (RIXS) for probing charge, orbital, spin and lattice excitations in materials across condensed matter physics, applied sciences and chemistry. Both the beamline and the RIXS spectrometer employ divergent variable-line-spacing gratings covering a broad energy range of 280-3000 eV. A combined energy resolution of ∼35 meV (16 meV) is readily achieved at 930 eV (530 eV) owing to the optimized optics and the mechanics. Considerable efforts have been paid to the design of the entire beamline, particularly the implementation of the collection mirrors, to maximize the X-ray photon throughput. The continuous rotation of the spectrometer over 150° under ultra high vacuum and a cryogenic manipulator with six degrees of freedom allow accurate mappings of low-energy excitations from solid state materials in momentum space. Most importantly, the facility features a unique combination of the high energy resolution and the high photon throughput vital for advanced RIXS applications. Together with its stability and user friendliness, I21 has become one of the most sought after RIXS beamlines in the world.
Collapse
Affiliation(s)
- Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | | | - Thomas Rice
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Matthew Hand
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Jiemin Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Stefano Agrestini
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Peter Garland
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Hongchang Wang
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Simon Alcock
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Ioana Nistea
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Brian Nutter
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Nicholas Rubies
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Giles Knap
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Martin Gaughran
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Fajin Yuan
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Peter Chang
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - John Emmins
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - George Howell
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
12
|
Wang Q, von Arx K, Horio M, Mukkattukavil DJ, Küspert J, Sassa Y, Schmitt T, Nag A, Pyon S, Takayama T, Takagi H, Garcia-Fernandez M, Zhou KJ, Chang J. Charge order lock-in by electron-phonon coupling in La 1.675Eu 0.2Sr 0.125CuO 4. SCIENCE ADVANCES 2021; 7:eabg7394. [PMID: 34193430 PMCID: PMC8245032 DOI: 10.1126/sciadv.abg7394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Charge order is universal to all hole-doped cuprates. Yet, the driving interactions remain an unsolved problem. Electron-electron interaction is widely believed to be essential, whereas the role of electron-phonon interaction is unclear. We report an ultrahigh-resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La1.675Eu0.2Sr0.125CuO4 Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that, in addition to electronic correlations, electron-phonon coupling contributes substantially to the emergence of long-range charge-stripe order in cuprates.
Collapse
Affiliation(s)
- Qisi Wang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Karin von Arx
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Masafumi Horio
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Julia Küspert
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Yasmine Sassa
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Thorsten Schmitt
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Sunseng Pyon
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tomohiro Takayama
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Hidenori Takagi
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Johan Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
13
|
Kim HH, Lefrançois E, Kummer K, Fumagalli R, Brookes NB, Betto D, Nakata S, Tortora M, Porras J, Loew T, Barber ME, Braicovich L, Mackenzie AP, Hicks CW, Keimer B, Minola M, Le Tacon M. Charge Density Waves in YBa_{2}Cu_{3}O_{6.67} Probed by Resonant X-Ray Scattering under Uniaxial Compression. PHYSICAL REVIEW LETTERS 2021; 126:037002. [PMID: 33543973 DOI: 10.1103/physrevlett.126.037002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We report a comprehensive Cu L_{3}-edge resonant x-ray scattering (RXS) study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa_{2}Cu_{3}O_{6.67} under uniaxial compression up to 1% along the two inequivalent Cu─O─Cu bond directions (a and b) in the CuO_{2} planes. We confirm the strong in-plane anisotropy of the 2D charge correlations and observe their symmetric response to pressure: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic RXS measurements show that the 3D charge order resides exclusively in the CuO_{2} planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.
Collapse
Affiliation(s)
- H-H Kim
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - E Lefrançois
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - K Kummer
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
| | - R Fumagalli
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - N B Brookes
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
| | - D Betto
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
| | - S Nakata
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Tortora
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - J Porras
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - T Loew
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M E Barber
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany
| | - L Braicovich
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - A P Mackenzie
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - C W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany
| | - B Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Minola
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Le Tacon
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Nag A, Zhu M, Bejas M, Li J, Robarts HC, Yamase H, Petsch AN, Song D, Eisaki H, Walters AC, García-Fernández M, Greco A, Hayden SM, Zhou KJ. Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 125:257002. [PMID: 33416344 DOI: 10.1103/physrevlett.125.257002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
High T_{c} superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic x-ray scattering to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors (La_{1.84}Sr_{0.16}CuO_{4} and Bi_{2}Sr_{1.6}La_{0.4}CuO_{6+δ}), crucially completing the picture. Interestingly, in contrast to the quasistatic charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behavior of valence charges in hole-doped cuprates.
Collapse
Affiliation(s)
- Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - M Zhu
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Matías Bejas
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - J Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - H C Robarts
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Hiroyuki Yamase
- International Center of Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0047, Japan
- Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - A N Petsch
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - D Song
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - H Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - A C Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | | | - Andrés Greco
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - S M Hayden
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|