1
|
Liang M, Liang L, Tayebi M, Zhong J, Ai Y. Lab-In-Fiber Optofluidic Device for Droplet Digital Polymerase Chain Reaction (DdPCR) with Real-Time Monitoring. ACS Sens 2024; 9:5275-5283. [PMID: 39321112 DOI: 10.1021/acssensors.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Droplet microfluidic systems have emerged as indispensable and advanced tools in contemporary biological science. A prominent example is the droplet digital polymerase chain reaction (ddPCR), which plays a pivotal role in next-generation sequencing and the detection of rare nucleic acids or mutations. However, existing optical detection configurations are bulky, intricate, and costly, and require meticulous optical alignment to optimize fluorescence sensing. Herein, we propose a lab-in-fiber optofluidic system (LiFO), which provides a stable and compact footprint, self-alignment, and enhanced optical coupling for high-accuracy ddPCR. Moreover, LiFO could expand its capabilities for multiangle-scattering light collection in which we collect focused forward-scattering light (fFSL) to enable real-time droplet counting and size monitoring. To accomplish these attributes, LiFO incorporates optical fibers, along with fabricated PDMS grooves, for a self-aligned optical setup to implement simultaneous fluorescence and scattering detection. Furthermore, LiFO harnesses the concept of flowing droplets functioning as microlenses, which allows us to collect and translate fFSL signals into droplet size information. We have demonstrated the effectiveness of LiFO in ddPCR applications, illustrating its capacity to enhance the accuracy and precision of DNA quantification. Notably, LiFO exhibits improved linearity in the measurement of serial DNA dilutions, reflected by an increase in R2 from 0.956 to 0.997. These results demonstrate the potential of LiFO to serve as a valuable tool across a wide spectrum of droplet microfluidic platforms, offering opportunities for advancement in practical applications.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Li Liang
- School of Physics and Electronic Technology, Anhui Normal University, Wuhu 241000, China
| | - Mahnoush Tayebi
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
2
|
Peng K, Wu Z, Feng Z, Deng R, Ma X, Fan B, Liu H, Tang Z, Zhao Z, Li Y. A highly integrated digital PCR system with on-chip heating for accurate DNA quantitative analysis. Biosens Bioelectron 2024; 253:116167. [PMID: 38422813 DOI: 10.1016/j.bios.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Digital polymerase chain reaction (dPCR) is extensively used for highly sensitive disease diagnosis due to its single-molecule detection ability. However, current dPCR systems require intricate DNA sample distribution, rely on cumbersome external heaters, and exhibit sluggish thermal cycling, hampering efficiency and speed of the dPCR process. Herein, we presented the development of a microwell array based dPCR system featuring an integrated self-heating dPCR chip. By utilizing hydrodynamic and electrothermal simulations, the chip's structure is optimized, resulting in improved partitioning within microwells and uniform thermal distribution. Through strategic hydrophilic/hydrophobic modifications on the chip's surface, we effectively secured the compartmentalization of sample within the microwells by employing an overlaying oil phase, which renders homogeneity and independence of samples in the microwells. To achieve precise, stable, uniform, and rapid self-heating of the chip, the ITO heating layer and the temperature control algorithm are deliberately designed. With a capacity of 22,500 microwells that can be easily expanded, the system successfully quantified EGFR plasmid solutions, exhibiting a dynamic linear range of 105 and a detection limit of 10 copies per reaction. To further validate its performance, we employed the dPCR platform for quantitative detection of BCR-ABL1 mutation gene fragments, where its performance was compared against the QuantStudio 3D, and the self-heating dPCR system demonstrated similar analytical accuracy to the commercial dPCR system. Notably, the individual chip is produced on a semiconductor manufacturing line, benefiting from mass production capabilities, so the chips are cost-effective and conducive to widespread adoption and accessibility.
Collapse
Affiliation(s)
- Kang Peng
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhihong Wu
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhongxin Feng
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, Guizhou, PR China
| | - Ruijun Deng
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Xiangguo Ma
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Beiyuan Fan
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Haonan Liu
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhuzhu Tang
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, Guizhou, PR China
| | - Zijian Zhao
- BOE Technology Group Co Ltd., Beijing, 100176, PR China.
| | - Yanzhao Li
- BOE Technology Group Co Ltd., Beijing, 100176, PR China.
| |
Collapse
|
3
|
Wang Y, Zhou X, Yang Z, Xu T, Fu H, Fong CC, Sun J, Chin YR, Zhang L, Guan X, Yang M. An integrated and multi-functional droplet-based microfluidic platform for digital DNA amplification. Biosens Bioelectron 2024; 246:115831. [PMID: 38008058 DOI: 10.1016/j.bios.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
Digital DNA amplification is a powerful method for detecting and quantifying rare nucleic acids. In this study, we developed a multi-functional droplet-based platform that integrates the traditional digital DNA amplification workflow into a one-step device. This platform enables efficient droplet generation, transition, and signal detection within a 5-min timeframe, distributing the sample into a uniform array of 4 × 104 droplets (variation <2%) within a chamber. Subsequent in-situ DNA amplification, fluorescence detection, and signal analysis were carried out. To assess the platform's performance, we quantitatively detected the human epidermal growth factor receptor (EGFR) mutation and human papillomavirus (HPV) mutation using digital polymerase chain reaction (dPCR) and digital loop-mediated isothermal amplification (dLAMP), respectively. The fluorescence results exhibited a positive, linear, and statistically significant correlation with target DNA concentrations ranging from 101 to 105 copies/μL, demonstrating the capability and feasibility of the integrated device for dPCR and dLAMP. This platform offers high-throughput droplet generation, eliminates droplet fusion and transition, is user-friendly, reduces costs compared to current methods, and holds potential for thermocycling and isothermal nucleic acid quantification with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Tao Xu
- Cellomics (Shenzhen) Limited, Shenzhen, Guangdong, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, Guangdong, China
| | - Chi-Chun Fong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Y Rebecca Chin
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Xinyuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Lai JH, Keum JW, Lee HG, Molaei M, Blair EJ, Li S, Soliman JW, Raol VK, Barker CL, Fodor SPA, Fan HC, Shum EY. New realm of precision multiplexing enabled by massively-parallel single molecule UltraPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561546. [PMID: 37873291 PMCID: PMC10592712 DOI: 10.1101/2023.10.09.561546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
PCR has been a reliable and inexpensive method for nucleic acid detection in the past several decades. In particular, multiplex PCR is a powerful tool to analyze many biomarkers in the same reaction, thus maximizing detection sensitivity and reducing sample usage. However, balancing the amplification kinetics between amplicons and distinguishing them can be challenging, diminishing the broad adoption of high order multiplex PCR panels. Here, we present a new paradigm in PCR amplification and multiplexed detection using UltraPCR. UltraPCR utilizes a simple centrifugation workflow to split a PCR reaction into ∼34 million partitions, forming an optically clear pellet of spatially separated reaction compartments in a PCR tube. After in situ thermocycling, light sheet scanning is used to produce a 3D reconstruction of the fluorescent positive compartments within the pellet. At typical sample DNA concentrations, the magnitude of partitions offered by UltraPCR dictate that the vast majority of target molecules occupy a compartment uniquely. This single molecule realm allows for isolated amplification events, thereby eliminating competition between different targets and generating unambiguous optical signals for detection. Using a 4-color optical setup, we demonstrate that we can incorporate 10 different fluorescent dyes in the same UltraPCR reaction. We further push multiplexing to an unprecedented level by combinatorial labeling with fluorescent dyes - referred to as "comboplex" technology. Using the same 4-color optical setup, we developed a 22-target comboplex panel that can detect all targets simultaneously at high precision. Collectively, UltraPCR has the potential to push PCR applications beyond what is currently available, enabling a new class of precision genomics assays.
Collapse
|
5
|
Rong N, Chen K, Shao J, Ouyang Q, Luo C. A 3D Scalable Chamber-Array Chip for Digital LAMP. Anal Chem 2023; 95:7830-7838. [PMID: 37115526 DOI: 10.1021/acs.analchem.2c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
As an absolute quantification method at the single-molecule level, digital PCR (dPCR) offers the highest accuracy. In this work, we developed a 3D scalable chamber-array chip that multiplied the number of partitions by stacking chamber-array layers and realized digital loop-mediated isothermal amplification to quantify DNA molecules. It greatly increases the number of partitions to improve the performance of dPCR without increasing the chip size, the operation workflow complicity, and operation time. For the three-chamber-array-layer chip which contains 200,000 reactors of a 0.125 nL volume, it has been proved that the reagent filling and partition were finished within 3 min, and the whole detection could be finished within 1 h. The method demonstrated that it could be scalable to a six-chamber-array layer, which contains 400,000 reactors without increasing the size of the chip and the complication of filling/partition workflow but only takes an additional hour for scanning. Due to its potential for high throughput, low cost, and simple operation, our device may significantly expand the clinical application range of dPCR.
Collapse
Affiliation(s)
- Nan Rong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Kaiyue Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
6
|
Zhu T, Nie J, Yu T, Zhu D, Huang Y, Chen Z, Gu Z, Tang J, Li D, Fei P. Large-scale high-throughput 3D culture, imaging, and analysis of cell spheroids using microchip-enhanced light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1659-1669. [PMID: 37078040 PMCID: PMC10110308 DOI: 10.1364/boe.485217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Light sheet microscopy combined with a microchip is an emerging tool in biomedical research that notably improves efficiency. However, microchip-enhanced light-sheet microscopy is limited by noticeable aberrations induced by the complex refractive indices in the chip. Herein, we report a droplet microchip that is specifically engineered to be capable of large-scale culture of 3D spheroids (over 600 samples per chip) and has a polymer index matched to water (difference <1%). When combined with a lab-built open-top light-sheet microscope, this microchip-enhanced microscopy technique allows 3D time-lapse imaging of the cultivated spheroids with ∼2.5-µm single-cell resolution and a high throughput of ∼120 spheroids per minute. This technique was validated by a comparative study on the proliferation and apoptosis rates of hundreds of spheroids with or without treatment with the apoptosis-inducing drug Staurosporine.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Nie
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yanyi Huang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Tang
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongyu Li
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fei
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Ma C, Yuan M, Gong P, Zhu H, Tan G. Design of a digital PCR optical detection system with multiple fluorescent microdroplets. APPLIED OPTICS 2023; 62:183-195. [PMID: 36606864 DOI: 10.1364/ao.479774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The need for accurate nucleic acid testing is increasing with the spread of the global pandemic. Problems such as low efficiency and precision and large volume exist because the number of existing digital polymerase chain reaction (PCR) testing instrument channels is low. In order to solve these problems, a four channel micro drop digital PCR system was designed. The collimating lens set and objective lens of the LED light source are designed in ZEMAX software, and the entire optical path is simulated. It is verified that the light energy utilization rate of the system is over 93% and that stray light interference is marginal.
Collapse
|
8
|
Shum EY, Lai JH, Li S, Lee HG, Soliman J, Raol VK, Lee CK, Fodor SP, Fan HC. Next-Generation Digital Polymerase Chain Reaction: High-Dynamic-Range Single-Molecule DNA Counting via Ultrapartitioning. Anal Chem 2022; 94:17868-17876. [PMID: 36508568 PMCID: PMC9798378 DOI: 10.1021/acs.analchem.2c03649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Digital PCR (dPCR) was first conceived for single-molecule quantitation. However, current dPCR systems often require DNA templates to share partitions due to limited partitioning capacities. Here, we introduce UltraPCR, a next-generation dPCR system where DNA counting is performed in a single-molecule regimen through a 6-log dynamic range using a swift and parallelized workflow. Each UltraPCR reaction is divided into >30 million partitions without microfluidics to achieve single template occupancy. Combined with a unique emulsion chemistry, partitions are optically clear, enabling the use of a three-dimensional imaging technique to rapidly detect DNA-positive partitions. Single-molecule occupancy also allows for more straightforward multiplex assay development due to the absence of partition-specific competition. As a proof of concept, we developed a 222-plex UltraPCR assay and demonstrated its potential use as a rapid, low-cost screening assay for noninvasive prenatal testing for as low as 4% trisomy fraction samples with high precision, accuracy, and reproducibility.
Collapse
|
9
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Emerging digital PCR technology in precision medicine. Biosens Bioelectron 2022; 211:114344. [DOI: 10.1016/j.bios.2022.114344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
|
11
|
Luo Y, Cui X, Cheruba E, Chua YK, Ng C, Tan RZ, Tan KK, Cheow LF. SAMBA: A Multicolor Digital Melting PCR Platform for Rapid Microbiome Profiling. SMALL METHODS 2022; 6:e2200185. [PMID: 35652511 DOI: 10.1002/smtd.202200185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
During the past decade, breakthroughs in sequencing technology have provided the basis for studies of the myriad ways in which microbial communities in and on the human body influence human health and disease. In almost every medical specialty, there is now a growing interest in accurate and quantitative profiling of the microbiota for use in diagnostic and therapeutic applications. However, the current next-generation sequencing approach for microbiome profiling is costly, requires laborious library preparation, and is challenging to scale up for routine diagnostics. Split, Amplify, and Melt analysis of BActeria-community (SAMBA), a novel multicolor digital melting polymerase chain reaction platform with unprecedented multiplexing capability is presented, and the capability to distinguish and quantify 16 bacteria species in mixtures is demonstrated. Subsequently, SAMBA is applied to measure the compositions of bacteria in the gut microbiome to identify microbial dysbiosis related to colorectal cancer. This rapid, low cost, and high-throughput approach will enable the implementation of microbiome diagnostics in clinical laboratories and routine medical practice.
Collapse
Affiliation(s)
- Yongqiang Luo
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Yong Kang Chua
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Charmaine Ng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Division of Colorectal Surgery, National University Hospital, Singapore, 119074, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
12
|
Zhang H, Laššáková S, Yan Z, Wang X, Šenkyřík P, Gaňová M, Chang H, Korabecna M, Neuzil P. Digital polymerase chain reaction duplexing method in a single fluorescence channel. Anal Chim Acta 2022; 1238:340243. [DOI: 10.1016/j.aca.2022.340243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
|
13
|
Chi Y, Shi M, Wu Y, Wu Y, Chang Y, Liu M. Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2244-2248. [PMID: 35611869 DOI: 10.1039/d2ay00656a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We described a new system termed droplet DNAzyme-coupled rolling circle amplification (dDRCA) that can selectively detect bacteria from clinical urine samples with single-cell sensitivity within 1.5 h compared with the several hours needed for traditionally used culture-based methods.
Collapse
Affiliation(s)
- Yanchen Chi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Meng Shi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yanfang Wu
- School of Chemistry and Australian Centre for Nano Medicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| |
Collapse
|
14
|
Zhang L, Fan W, Jia D, Feng Q, Ren W, Liu C. Microchamber-Free Digital Flow Cytometric Analysis of T4 Polynucleotide Kinase Phosphatase Based on Single-Enzyme-to-Single-Bead Space-Confined Reaction. Anal Chem 2021; 93:14828-14836. [PMID: 34713697 DOI: 10.1021/acs.analchem.1c03724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Digital bioassays have attracted extensive attention in biomedical applications due to their ultrahigh sensitivity. However, traditional digital bioassays require numerous microchambers such as droplets or microwells, which restricts their application scope. Herein, we propose a microchamber-free flow cytometric method for the digital quantification of T4 polynucleotide kinase phosphatase (T4 PNKP) based on an unprecedented phenomenon that each T4 PNKP molecule-catalyzed reaction can be spatially self-confined on a single microbead, which ultimately enables the one-target-to-one-fluorescence-positive microbead digital signal transduction. The digital signal-readout mode can clearly detect T4 PNKP concentrations as low as 1.28 × 10-10 U/μL, making it most sensitive method to date. Significantly, T4 PNKP can be specifically distinguished from other phosphatases and nucleases in complex samples by digitally counting the fluorescence-positive microbeads, which cannot be realized by traditional bulk measurement-based methods. Taking advantage of the novel space-confined enzymatic feature of T4 PNKP, this digital mechanism can use T4 PNKP as the enzyme label to fabricate digital sensing systems toward various biomolecules such as digital enzyme-linked immunosorbent assay (ELISA). Therefore, this work not only enlarges the toolbox for high-sensitivity biomolecule detection but also opens new gates to fabricate next-generation digital assays.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Qinya Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
15
|
Cui X, Hu T, Chen Q, Zhao Q, Wu Y, Xie T, Liu P, Su X, Li G. A facile and rapid route to self-digitization of samples into a high density microwell array for digital bioassays. Talanta 2021; 233:122589. [PMID: 34215079 DOI: 10.1016/j.talanta.2021.122589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023]
Abstract
Digital bioassays are powerful methods to detect rare analytes from complex mixtures and study the temporal processes of individual entities within biological systems. In digital bioassays, a crucial first step is the discretization of samples into a large number of identical independent partitions. Here, we developed a rapid and facile sample partitioning method for versatile digital bioassays. This method is based on a detachable self-digitization (DSD) chip which couples a reversible assembly configuration and a predegassing-based self-pumping mechanism to achieve an easy, fast, and large-scale sample partitioning. The DSD chip consists of a channel layer used for loading the sample and a microwell layer used for holding the sample partitions. Benefitting from its detachability, the chip avoids a lengthy oil flushing process used to remove the excess sample in loading channels and can compartmentalize a sample into more than 100,000 wells of picoliter volume with densities up to 14,000 wells/cm2 in less than 30 s. We also demonstrated the utility of the proposed method by applying it to digital PCR and digital microbial assays.
Collapse
Affiliation(s)
- Xu Cui
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Tianbao Hu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Qiang Chen
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, 310018, China
| | - Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Yin Wu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Tengbao Xie
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Pengyong Liu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Xi Su
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
16
|
Chen X, Ping J, Sun Y, Yi C, Liu S, Gong Z, Fei P. Deep-learning on-chip light-sheet microscopy enabling video-rate volumetric imaging of dynamic biological specimens. LAB ON A CHIP 2021; 21:3420-3428. [PMID: 34486609 DOI: 10.1039/d1lc00475a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Volumetric imaging of dynamic signals in a large, moving, and light-scattering specimen is extremely challenging, owing to the requirement on high spatiotemporal resolution and difficulty in obtaining high-contrast signals. Here we report that through combining a microfluidic chip-enabled digital scanning light-sheet illumination strategy with deep-learning based image restoration, we can realize isotropic 3D imaging of a whole crawling Drosophila larva on an ordinary inverted microscope at a single-cell resolution and a high volumetric imaging rate up to 20 Hz. Enabled with high performances even unmet by current standard light-sheet fluorescence microscopes, we in toto record the neural activities during the forward and backward crawling of a 1st instar larva, and successfully correlate the calcium spiking of motor neurons with the locomotion patterns.
Collapse
Affiliation(s)
- Xiaopeng Chen
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Junyu Ping
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | - Chengqiang Yi
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | - Zhefeng Gong
- Zhejiang Lab, Hangzhou, 311121, China.
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
17
|
Mou L, Hong H, Xu X, Xia Y, Jiang X. Digital Hybridization Human Papillomavirus Assay with Attomolar Sensitivity without Amplification. ACS NANO 2021; 15:13077-13084. [PMID: 34324808 DOI: 10.1021/acsnano.1c02311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detection of nucleic acid without amplification can avoid problems associated with thermal cycling such as labor-intensiveness and aerosol pollution. Here we develop a droplet-based digital microfluidic hybridization assay for nucleic acid detection with attomolar sensitivity. This assay provides a clinically useful sensitivity for detecting human papillomavirus (HPV) without amplification. The sensitivity is accomplished using femtoliter-sized droplet microfluidics for concentrating enzyme-catalyzed fluorescent products into a detectable signal and magnetic beads for accelerating reaction time. Meanwhile, using magnetic beads and droplet microfluidic chips, we can improve the sampling efficiency over conventional methods. We characterized the sensitivity, selectivity, detection range, stability, and accuracy of our assay. Our assay is 50-fold more sensitive than the traditional hybrid capture assay. The assay without amplification avoids problems of complex handling procedures and aerosol pollution. The direct and sensitive detection of nucleic acid using a droplet microfluidic system provides an early disease diagnosis tool.
Collapse
Affiliation(s)
- Lei Mou
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Honghai Hong
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xiaojian Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yong Xia
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xingyu Jiang
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
18
|
Sun C, Liu L, Vasudevan HN, Chang KC, Abate AR. Accurate Bulk Quantitation of Droplet Digital Polymerase Chain Reaction. Anal Chem 2021; 93:9974-9979. [PMID: 34252272 PMCID: PMC8829825 DOI: 10.1021/acs.analchem.1c00877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Droplet digital PCR
provides superior accuracy for nucleic acid
quantitation. The requirement of microfluidics to generate and analyze
the emulsions, however, is a barrier to its adoption, particularly
in low resource settings or clinical laboratories. Here, we report
a novel method to prepare ddPCR droplets by vortexing and readout
of the results by bulk analysis of recovered amplicons. We demonstrate
the approach by accurately quantitating SARS-CoV-2 sequences using
entirely bulk processing and no microfluidics. Our approach for quantitating
reactions should extend to all digital assays that generate amplicons,
including digital PCR and LAMP conducted in droplets, microchambers,
or nanoliter wells. More broadly, our approach combines important
attributes of ddPCR, including enhanced accuracy and robustness to
inhibition, with the high-volume sample processing ability of quantitative
PCR.
Collapse
Affiliation(s)
- Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Leqian Liu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Harish N Vasudevan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94158, United States
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
19
|
Jiang M, Liao P, Sun Y, Shao X, Chen Z, Fei P, Wang J, Huang Y. Rotational scan digital LAMP for accurate quantitation of nucleic acids. LAB ON A CHIP 2021; 21:2265-2271. [PMID: 33908545 DOI: 10.1039/d1lc00114k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Digital quantitation of nucleic acids is precise and sensitive because of its molecular-level resolution. However, only several quantitation formats are common, especially pertaining to how one obtains digital signals from multiple droplets. Here we present rotational scan digital loop-mediated amplification, termed RS-dLAMP. Droplets generated by centrifugation undergo isothermal loop-mediated amplification (LAMP), and self-tile by gravitation into a tubular space between two coaxial cylinders, which are then rotated and scanned to acquire droplet fluorescence signals. RS-dLAMP is quantitatively comparable to commercial digital PCR, yet has higher throughput. Moreover, by sealing the sample throughout analysis, RS-dLAMP eliminates contamination, facilitating point-of-care diagnosis and other applications.
Collapse
Affiliation(s)
- Mengcheng Jiang
- Materials Science and Engineering, College of Engineering, Peking University, Beijing, China. and Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Peiyu Liao
- Materials Science and Engineering, College of Engineering, Peking University, Beijing, China. and Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yue Sun
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xinyang Shao
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zitian Chen
- Materials Science and Engineering, College of Engineering, Peking University, Beijing, China. and Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbin Wang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Yanyi Huang
- Materials Science and Engineering, College of Engineering, Peking University, Beijing, China. and Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China and College of Chemistry and Molecular Engineering, and, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China and Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
20
|
Lin W, Tian T, Jiang Y, Xiong E, Zhu D, Zhou X. A CRISPR/Cas9 eraser strategy for contamination-free PCR end-point detection. Biotechnol Bioeng 2021; 118:2053-2066. [PMID: 33615437 PMCID: PMC8013395 DOI: 10.1002/bit.27718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Polymerase chain reaction (PCR), a central technology for molecular diagnostics, is highly sensitive but susceptible to the risk of false positives caused by aerosol contamination, especially when an end-point detection mode is applied. Here, we proposed a solution by designing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 eraser strategy for eliminating potential contamination amplification. The CRISPR/Cas9 engineered eraser is firstly adopted into artpcr reverse-transcription PCR (RT-PCR) system to achieve contamination-free RNA detection. Subsequently, we extended this CRISPR/Cas9 eraser to the PCR system. We engineered conventional PCR primers to enable the amplified products to contain an implanted NGG (protospacer adjacent motif, PAM) site, which is used as a code for specific CRISPR/Cas9 recognition. Pre-incubation of Cas9/sgRNA with PCR mix leads to a selective cleavage of contamination amplicons, thus only the template DNA is amplified. The developed CRISPR/Cas9 eraser, adopted by both RT-PCR and PCR systems, showed high-fidelity detection of SARS-CoV-2 and African swine fever virus with a convenient strip test.
Collapse
Affiliation(s)
- Wei Lin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina
| | - Tian Tian
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Yongzhong Jiang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
- Hubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Erhu Xiong
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Debin Zhu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of ChemistrySouth China Normal UniversityGuangzhouChina
| | - Xiaoming Zhou
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
21
|
Sun C, Liu L, Vasudevan HN, Chang KC, Abate AR. Accurate bulk quantitation of droplet digital PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.13.424628. [PMID: 33469578 PMCID: PMC7814815 DOI: 10.1101/2021.01.13.424628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Droplet digital PCR provides superior accuracy in nucleic acid quantitation. The requirement of microfluidics to generate and analyze the emulsions, however, is a barrier to its adoption, particularly in low resource or clinical settings. Here, we report a novel method to prepare ddPCR droplets by vortexing and readout the results by bulk analysis of recovered amplicons. We demonstrate the approach by accurately quantitating SARS-CoV-2 sequences using entirely bulk processing and no microfluidics. Our approach for quantitating reactions should extend to all digital assays that generate amplicons, including digital PCR and LAMP conducted in droplets, microchambers, or nanoliter wells. More broadly, our approach combines important attributes of ddPCR, including enhanced accuracy and robustness to inhibition, with the high-volume sample processing ability of quantitative PCR.
Collapse
Affiliation(s)
- Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Leqian Liu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Harish N. Vasudevan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam R. Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Xu G, Si H, Jing F, Sun P, Zhao D, Wu D. A Double-Deck Self-Digitization Microfluidic Chip for Digital PCR. MICROMACHINES 2020; 11:mi11121025. [PMID: 33255151 PMCID: PMC7759810 DOI: 10.3390/mi11121025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
In this work, a double-deck microfluidic chip was presented for digital PCR application. This chip consists of two reverse-placed micro-patterned polydimethylsiloxane (PDMS) layers between the top and bottom glass substrates. Each micropatterned PDMS layer contains more than 20,000 cylindrical micro-chambers to hold the partitioned droplets. The double-deck designs can double the number of chambers and reagent capacity without changing the planar area of the chip. In addition, carbon black was mixed into the pure PDMS gel to obstruct the passage of fluorescence from the positive chambers between the two layers of the chip. Thus, the fluorescence signal of micro-chambers in different layers of the chip after PCR can be collected without mutual interference. The quantitative capability of the proposed chip was evaluated by measuring a 10-fold serial dilution of the DNA template. A high accuracy of the absolute quantification for nucleic acid with a dynamic range of 105 was demonstrated by this chip in this work. Owing to its characteristics of small planar area, large capacity, and sensitivity, the double-deck microfluidic chip is expected to further promote the extensive applications of digital PCR.
Collapse
Affiliation(s)
- Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.); (D.Z.)
| | - Huaqing Si
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.); (D.Z.)
| | - Fengxiang Jing
- Turtle Technology Company Limited, Shanghai 200439, China;
| | - Peng Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.); (D.Z.)
| | - Dan Zhao
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.); (D.Z.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.); (D.Z.)
- Correspondence:
| |
Collapse
|