1
|
Gutarra S, Mitchell EG, Dunn FS, Gibson BM, Racicot RA, Darroch SAF, Rahman IA. Ediacaran marine animal forests and the ventilation of the oceans. Curr Biol 2024; 34:2528-2534.e3. [PMID: 38761801 DOI: 10.1016/j.cub.2024.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
The rise of animals across the Ediacaran-Cambrian transition marked a step-change in the history of life, from a microbially dominated world to the complex macroscopic biosphere we see today.1,2,3 While the importance of bioturbation and swimming in altering the structure and function of Earth systems is well established,4,5,6 the influence of epifaunal animals on the hydrodynamics of marine environments is not well understood. Of particular interest are the oldest "marine animal forests,"7 which comprise a diversity of sessile soft-bodied organisms dominated by the fractally branching rangeomorphs.8,9 Typified by fossil assemblages from the Ediacaran of Mistaken Point, Newfoundland,8,10,11 these ancient communities might have played a pivotal role in structuring marine environments, similar to modern ecosystems,7,12,13 but our understanding of how they impacted fluid flow in the water column is limited. Here, we use ecological modeling and computational flow simulations to explore how Ediacaran marine animal forests influenced their surrounding environment. Our results reveal how organism morphology and community structure and composition combined to impact vertical mixing of the surrounding water. We find that Mistaken Point communities were capable of generating high-mixing conditions, thereby likely promoting gas and nutrient transport within the "canopy." This mixing could have served to enhance local-scale oxygen concentrations and redistribute resources like dissolved organic carbon. Our work suggests that Ediacaran marine animal forests may have contributed to the ventilation of the oceans over 560 million years ago, well before the Cambrian explosion of animals.
Collapse
Affiliation(s)
| | - Emily G Mitchell
- Department of Zoology, University Museum of Zoology Cambridge, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Frances S Dunn
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Brandt M Gibson
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | | | | | - Imran A Rahman
- The Natural History Museum, London SW7 5BD, UK; Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| |
Collapse
|
2
|
Boag TH, Busch JF, Gooley JT, Strauss JV, Sperling EA. Deep-water first occurrences of Ediacara biota prior to the Shuram carbon isotope excursion in the Wernecke Mountains, Yukon, Canada. GEOBIOLOGY 2024; 22:e12597. [PMID: 38700422 DOI: 10.1111/gbi.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerous Aspidella hold-fast discs, indicative of frondose Ediacara organisms, from deep-water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow-water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre-Shuram CIE Ediacara-type fossils occurring only in deep-water facies within a basin that has equivalent well-preserved shallow-water facies provides the first stratigraphic paleobiological support for a deep-water origination of the Ediacara biota. In contrast, new occurrences of Ediacara-type fossils (including juvenile fronds, Beltanelliformis, Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep- and shallow-water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota.
Collapse
Affiliation(s)
- Thomas H Boag
- Department of Earth and Planetary Science, Stanford University, Stanford, California, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - James F Busch
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jared T Gooley
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA
| | - Justin V Strauss
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Erik A Sperling
- Department of Earth and Planetary Science, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Stern RJ, Gerya TV. The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Sci Rep 2024; 14:8552. [PMID: 38609425 PMCID: PMC11015018 DOI: 10.1038/s41598-024-54700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/14/2024] [Indexed: 04/14/2024] Open
Abstract
Within the uncertainties of involved astronomical and biological parameters, the Drake Equation typically predicts that there should be many exoplanets in our galaxy hosting active, communicative civilizations (ACCs). These optimistic calculations are however not supported by evidence, which is often referred to as the Fermi Paradox. Here, we elaborate on this long-standing enigma by showing the importance of planetary tectonic style for biological evolution. We summarize growing evidence that a prolonged transition from Mesoproterozoic active single lid tectonics (1.6 to 1.0 Ga) to modern plate tectonics occurred in the Neoproterozoic Era (1.0 to 0.541 Ga), which dramatically accelerated emergence and evolution of complex species. We further suggest that both continents and oceans are required for ACCs because early evolution of simple life must happen in water but late evolution of advanced life capable of creating technology must happen on land. We resolve the Fermi Paradox (1) by adding two additional terms to the Drake Equation: foc (the fraction of habitable exoplanets with significant continents and oceans) and fpt (the fraction of habitable exoplanets with significant continents and oceans that have had plate tectonics operating for at least 0.5 Ga); and (2) by demonstrating that the product of foc and fpt is very small (< 0.00003-0.002). We propose that the lack of evidence for ACCs reflects the scarcity of long-lived plate tectonics and/or continents and oceans on exoplanets with primitive life.
Collapse
Affiliation(s)
- Robert J Stern
- Department of Sustainable Earth Systems Science, University of Texas at Dallas, Richardson, TX, 75083-0688, USA
| | - Taras V Gerya
- Department of Earth Sciences, ETH-Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland.
| |
Collapse
|
4
|
Mussini G, Dunn FS. Decline and fall of the Ediacarans: late-Neoproterozoic extinctions and the rise of the modern biosphere. Biol Rev Camb Philos Soc 2024; 99:110-130. [PMID: 37667585 DOI: 10.1111/brv.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The end-Neoproterozoic transition marked a gradual but permanent shift between distinct configurations of Earth's biosphere. This interval witnessed the demise of the enigmatic Ediacaran Biota, ushering in the structured trophic webs and disparate animal body plans of Phanerozoic ecosystems. However, little consensus exists on the reality, drivers, and macroevolutionary implications of end-Neoproterozoic extinctions. Here we evaluate potential drivers of late-Neoproterozoic turnover by addressing recent findings on Ediacaran geochronology, the persistence of classical Ediacaran macrobionts into the Cambrian, and the existence of Ediacaran crown-group eumetazoans. Despite renewed interest in the possibility of Phanerozoic-style 'mass extinctions' in the latest Neoproterozoic, our synthesis of the available evidence does not support extinction models based on episodic geochemical triggers, nor does it validate simple ecological interpretations centred on direct competitive displacement. Instead, we argue that the protracted and indirect effects of early bilaterian innovations, including escalations in sediment engineering, predation, and the largely understudied impacts of reef-building, may best account for the temporal structure and possible selectivity of late-Neoproterozoic extinctions. We integrate these processes into a generalised model of early eumetazoan-dominated ecologies, charting the disruption of spatial and temporal isotropy on the Ediacaran benthos as a consequence of diversifying macrofaunal interactions. Given the nature of resource distribution in Ediacaran ecologies, the continuities among Ediacaran and Cambrian faunas, and the convergent origins of ecologically disruptive innovations among bilaterians we suggest that the rise of Phanerozoic-type biotas may have been unstoppable.
Collapse
Affiliation(s)
- Giovanni Mussini
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Frances S Dunn
- Oxford University Museum of Natural History, Parks Road, University of Oxford, Oxford, OX1 3PW, UK
| |
Collapse
|
5
|
Ostrander CM, Bjerrum CJ, Ahm ASC, Stenger SR, Bergmann KD, El-Ghali MAK, Harthi AR, Aisri Z, Nielsen SG. Widespread seafloor anoxia during generation of the Ediacaran Shuram carbon isotope excursion. GEOBIOLOGY 2023; 21:556-570. [PMID: 37157927 DOI: 10.1111/gbi.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Reconstructing the oxygenation history of Earth's oceans during the Ediacaran period (635 to 539 million years ago) has been challenging, and this has led to a polarizing debate about the environmental conditions that played host to the rise of animals. One focal point of this debate is the largest negative inorganic C-isotope excursion recognized in the geologic record, the Shuram excursion, and whether this relic tracks the global-scale oxygenation of Earth's deep oceans. To help inform this debate, we conducted a detailed geochemical investigation of two siliciclastic-dominated successions from Oman deposited through the Shuram Formation. Iron speciation data from both successions indicate formation beneath an intermittently anoxic local water column. Authigenic thallium (Tl) isotopic compositions leached from both successions are indistinguishable from bulk upper continental crust (ε205 TlA ≈ -2) and, by analogy with modern equivalents, likely representative of the ancient seawater ε205 Tl value. A crustal seawater ε205 Tl value requires limited manganese (Mn) oxide burial on the ancient seafloor, and by extension widely distributed anoxic sediment porewaters. This inference is supported by muted redox-sensitive element enrichments (V, Mo, and U) and consistent with some combination of widespread (a) bottom water anoxia and (b) high sedimentary organic matter loading. Contrary to a classical hypothesis, our interpretations place the Shuram excursion, and any coeval animal evolutionary events, in a predominantly anoxic global ocean.
Collapse
Affiliation(s)
- Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA
| | - Christian J Bjerrum
- Department of Geoscience and Natural Resource Management, Nordic Center for Earth Evolution, University of Copenhagen, Copenhagen K, Denmark
| | - Anne-Sofie C Ahm
- Department of Geoscience and Natural Resource Management, Nordic Center for Earth Evolution, University of Copenhagen, Copenhagen K, Denmark
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Simon R Stenger
- Department of Geoscience and Natural Resource Management, Nordic Center for Earth Evolution, University of Copenhagen, Copenhagen K, Denmark
- Norwegian Geotechnical Institute, Trondheim, Norway
| | - Kristin D Bergmann
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mohamed A K El-Ghali
- Department of Earth Sciences and Earth Sciences Research Centre, Sultan Qaboos University, Muscat, Oman
| | | | | | - Sune G Nielsen
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
6
|
Kirschvink JL. A movable beast: glaciation in the Ediacaran. Natl Sci Rev 2023; 10:nwad153. [PMID: 37389142 PMCID: PMC10306354 DOI: 10.1093/nsr/nwad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Joseph L Kirschvink
- Division of Geological & Planetary Sciences, California Institute of Technology, USA
- The Marine Core Research Institute, Kochi University, Japan
| |
Collapse
|
7
|
Wang R, Shen B, Lang X, Wen B, Mitchell RN, Ma H, Yin Z, Peng Y, Liu Y, Zhou C. A Great late Ediacaran ice age. Natl Sci Rev 2023; 10:nwad117. [PMID: 37389143 PMCID: PMC10306365 DOI: 10.1093/nsr/nwad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
The emergence of the Ediacara biota soon after the Gaskiers glaciation ca. 580 million years ago (Ma) implies a possible glacial fuse for the evolution of animals. However, the timing of Ediacaran glaciation remains controversial because of poor age constraints on the ∼30 Ediacaran glacial deposits known worldwide. In addition, paleomagnetic constraints and a lack of convincing Snowball-like cap carbonates indicate that Ediacaran glaciations likely did not occur at low latitudes. Thus, reconciling the global occurrences without global glaciation remains a paradox. Here, we report that the large amplitude, globally synchronous ca. 571-562 Ma Shuram carbon isotope excursion occurs below the Ediacaran Hankalchough glacial deposit in Tarim, confirming a post-Shuram glaciation. Leveraging paleomagnetic evidence for a ∼90° reorientation of all continents due to true polar wander, and a non-Snowball condition that rules out low-latitude glaciations, we use paleogeographic reconstructions to further constrain glacial ages. Our results depict a 'Great Ediacaran Glaciation' occurring diachronously but continuously from ca. 580-560 Ma as different continents migrated through polar-temperate latitudes. The succession of radiation, turnover and extinction of the Ediacara biota strongly reflects glacial-deglacial dynamics.
Collapse
Affiliation(s)
- Ruimin Wang
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education and School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Bing Shen
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education and School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xianguo Lang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, and Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
| | - Bin Wen
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ross N Mitchell
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Ma
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongbo Peng
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yonggang Liu
- School of Physics, Peking University, Beijing 100871, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
8
|
Wang H, Peng Y, Li C, Cao X, Cheng M, Bao H. Sulfate triple-oxygen-isotope evidence confirming oceanic oxygenation 570 million years ago. Nat Commun 2023; 14:4315. [PMID: 37463883 DOI: 10.1038/s41467-023-39962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
The largest negative inorganic carbon isotope excursion in Earth's history, namely the Ediacaran Shuram Excursion (SE), closely followed by early animal radiation, has been widely interpreted as a consequence of oceanic oxidation. However, the primary nature of the signature, source of oxidants, and tempo of the event remain contested. Here, we show that carbonate-associated sulfate (CAS) from three different paleocontinents all have conspicuous negative 17O anomalies (Δ'17OCAS values down to -0.53‰) during the SE. Furthermore, the Δ'17OCAS varies in correlation with its corresponding δ34SCAS and δ18OCAS as well as the carbonate δ13Ccarb, decreasing initially followed by a recovery over the ~7-Myr SE duration. In a box-model examination, we argue for a period of sustained water-column ventilation and consequently enhanced sulfur oxidation in the SE ocean. Our findings reveal a direct involvement of mass-anomalously 17O-depleted atmospheric O2 in marine sulfate formation and thus a primary global oceanic oxygenation event during the SE.
Collapse
Affiliation(s)
- Haiyang Wang
- International Center for Isotope Effects Research, Nanjing University, Nanjing, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China
| | - Yongbo Peng
- International Center for Isotope Effects Research, Nanjing University, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling and State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China.
| | - Chao Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China.
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China.
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, China.
| | - Xiaobin Cao
- International Center for Isotope Effects Research, Nanjing University, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling and State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Meng Cheng
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, China
| | - Huiming Bao
- International Center for Isotope Effects Research, Nanjing University, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling and State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Zheng W, Zhou A, Sahoo SK, Nolan MR, Ostrander CM, Sun R, Anbar AD, Xiao S, Chen J. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nat Commun 2023; 14:3920. [PMID: 37400445 DOI: 10.1038/s41467-023-39427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
The Ediacaran Period (~635-539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.
Collapse
Affiliation(s)
- Wang Zheng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Anwen Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Department of Earth, Ocean and Atmospheric Science and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Morrison R Nolan
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ruoyu Sun
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
10
|
Gong Z, Wei GY, Fakhraee M, Alcott LJ, Jiang L, Zhao M, Planavsky NJ. Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope excursion. GEOBIOLOGY 2023; 21:407-420. [PMID: 36755479 DOI: 10.1111/gbi.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 06/13/2023]
Abstract
The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574-567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ13 C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ238 U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ238 U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ13 C and δ238 U trends during the SE. We suggest that global seawater δ238 U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Guang-Yi Wei
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Mojtaba Fakhraee
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Lewis J Alcott
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Lei Jiang
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingyu Zhao
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Noah J Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Dodd MS, Shi W, Li C, Zhang Z, Cheng M, Gu H, Hardisty DS, Loyd SJ, Wallace MW, vS Hood A, Lamothe K, Mills BJW, Poulton SW, Lyons TW. Uncovering the Ediacaran phosphorus cycle. Nature 2023:10.1038/s41586-023-06077-6. [PMID: 37258677 DOI: 10.1038/s41586-023-06077-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 06/02/2023]
Abstract
Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.
Collapse
Affiliation(s)
- Matthew S Dodd
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China
- School of Earth Sciences, University of Western Australia, Perth, Western Australia, Australia
- Forrest Research Foundation, Perth, Western Australia, Australia
| | - Wei Shi
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China
| | - Chao Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China.
| | - Zihu Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China
| | - Meng Cheng
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu, China
| | - Haodong Gu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Dalton S Hardisty
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
| | - Sean J Loyd
- Department of Geological Sciences, California State University, Fullerton, CA, USA
| | - Malcolm W Wallace
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ashleigh vS Hood
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Kelsey Lamothe
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Simon W Poulton
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
12
|
Griffiths HJ, Whittle RJ, Mitchell EG. Animal survival strategies in Neoproterozoic ice worlds. GLOBAL CHANGE BIOLOGY 2023; 29:10-20. [PMID: 36220153 PMCID: PMC10091762 DOI: 10.1111/gcb.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.
Collapse
|
13
|
Chang B, Li C, Algeo TJ, Lyons TW, Shi W, Cheng M, Luo G, She Z, Xie S, Tong J, Zhu M, Huang J, Foster I, Tripati A. A ∼60-Ma-long, high-resolution record of Ediacaran paleotemperature. Sci Bull (Beijing) 2022; 67:910-913. [PMID: 36546024 DOI: 10.1016/j.scib.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Biao Chang
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China.
| | - Thomas J Algeo
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China; Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Wei Shi
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Meng Cheng
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Genming Luo
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Zhenbing She
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Jinnan Tong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology & Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Huang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China.
| | - Ian Foster
- UMR6538 Géosciences Océan, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Aradhna Tripati
- UMR6538 Géosciences Océan, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzané 29280, France; Department of Earth, Planetary and Space Sciences, Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Yang C, Rooney AD, Condon DJ, Li XH, Grazhdankin DV, Bowyer FT, Hu C, Macdonald FA, Zhu M. The tempo of Ediacaran evolution. SCIENCE ADVANCES 2021; 7:eabi9643. [PMID: 34731004 PMCID: PMC8565906 DOI: 10.1126/sciadv.abi9643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The rise of complex macroscopic life occurred during the Ediacaran Period, an interval that witnessed large-scale disturbances to biogeochemical systems. The current Ediacaran chronostratigraphic framework is of insufficient resolution to provide robust global correlation schemes or test hypotheses for the role of biogeochemical cycling in the evolution of complex life. Here, we present new radio-isotopic dates from Ediacaran strata that directly constrain key fossil assemblages and large-magnitude carbon cycle perturbations. These new dates and integrated global correlations demonstrate that late Ediacaran strata of South China are time transgressive and that the 575- to 550-Ma interval is marked by two large negative carbon isotope excursions: the Shuram and a younger one that ended ca. 550 Ma ago. These data calibrate the tempo of Ediacaran evolution characterized by intervals of tens of millions of years of increasing ecosystem complexity, interrupted by biological turnovers that coincide with large perturbations to the carbon cycle.
Collapse
Affiliation(s)
- Chuan Yang
- Geochronology and Tracers Facility, British Geological Survey, Keyworth NG12 5GG, UK
| | - Alan D. Rooney
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| | - Daniel J. Condon
- Geochronology and Tracers Facility, British Geological Survey, Keyworth NG12 5GG, UK
| | - Xian-Hua Li
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dmitriy V. Grazhdankin
- Precambrian Palaeontology and Stratigraphy Laboratory, Trofimuk Institute of Petroleum Geology and Geophysics, prospect Akademika Koptyuga 3, Novosibirsk 630090, Russia
- Novosibirsk State University, ulitsa Pirogova 1, Novosibirsk 630090, Russia
| | - Fred T. Bowyer
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Chunlin Hu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Francis A. Macdonald
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Maoyan Zhu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Liu Y, Chen W, Foley SF, Shen Y, Chen C, Li J, Ou X, He D, Feng Q, Lin J. The largest negative carbon isotope excursions in Neoproterozoic carbonates caused by recycled carbonatite volcanic ash. Sci Bull (Beijing) 2021; 66:1925-1931. [PMID: 36654402 DOI: 10.1016/j.scib.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
The late Ediacaran Shuram Excursion (SE) records the most prominent negative δ13C excursions (δ13C = -12‰) during Earth's history. It has been hypothesized to have resulted from oxidation of dissolved organic matter, diagenetic or authigenic precipitates. However, the origin of the SE remains enigmatic; current models face challenges regarding the significant amount of atmospheric oxygen needed to balance such extensive oxidation and sustained inputs of light carbon with extremely negative C isotope compositions. Here, we show that the Doushantuo Formation at the Jiulongwan section in South China, a key stratum recording the SE event, contains mineralogical and geochemical signatures related to igneous processes. Both the occurrence of ankerite, feldspar, moissanite and euhedral quartz in the SE samples and the relatively consistent Ce anomalies of carbonate and O isotopes of quartz indicate a contribution from an igneous source. In particular, the SE samples have trace element and C isotope compositions similar to those of recycled carbonatites formed by decarbonation and melting of sedimentary carbonate rocks. These observations suggest that the deep cycle of ancient carbonate rocks, which were subjected to decarbonation during subduction, melting and eruption related to the breakup of the Rodinia supercontinent, contributed to the SE. This igneous model for the SE may provide a connection between the deep and shallow carbon cycles of the Earth.
Collapse
Affiliation(s)
- Yongsheng Liu
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Wei Chen
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Stephen F Foley
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yan'an Shen
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chunfei Chen
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Junhua Li
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiaobin Ou
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Detao He
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Qinglai Feng
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jie Lin
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
17
|
Cracknell K, García-Bellido DC, Gehling JG, Ankor MJ, Darroch SAF, Rahman IA. Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities. Sci Rep 2021; 11:4121. [PMID: 33602958 PMCID: PMC7893023 DOI: 10.1038/s41598-021-83452-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Suspension feeding is a key ecological strategy in modern oceans that provides a link between pelagic and benthic systems. Establishing when suspension feeding first became widespread is thus a crucial research area in ecology and evolution, with implications for understanding the origins of the modern marine biosphere. Here, we use three-dimensional modelling and computational fluid dynamics to establish the feeding mode of the enigmatic Ediacaran pentaradial eukaryote Arkarua. Through comparisons with two Cambrian echinoderms, Cambraster and Stromatocystites, we show that flow patterns around Arkarua strongly support its interpretation as a passive suspension feeder. Arkarua is added to the growing number of Ediacaran benthic suspension feeders, suggesting that the energy link between pelagic and benthic ecosystems was likely expanding in the White Sea assemblage (~ 558-550 Ma). The advent of widespread suspension feeding could therefore have played an important role in the subsequent waves of ecological innovation and escalation that culminated with the Cambrian explosion.
Collapse
Affiliation(s)
- Kelsie Cracknell
- grid.5337.20000 0004 1936 7603School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ UK
| | - Diego C. García-Bellido
- grid.1010.00000 0004 1936 7304School of Biological Sciences, University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005 Australia ,grid.437963.c0000 0001 1349 5098South Australian Museum, Adelaide, South Australia 5000 Australia
| | - James G. Gehling
- grid.437963.c0000 0001 1349 5098South Australian Museum, Adelaide, South Australia 5000 Australia
| | - Martin J. Ankor
- grid.1010.00000 0004 1936 7304Department of Earth Sciences and Sprigg Geobiology Centre, University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005 Australia
| | - Simon A. F. Darroch
- grid.152326.10000 0001 2264 7217Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235-1805 USA ,grid.462628.c0000 0001 2184 5457Senckenberg Museum of Natural History, 60325 Frankfurt, Germany
| | - Imran A. Rahman
- grid.440504.10000 0000 8693 4250Oxford University Museum of Natural History, Oxford, OX1 3PW UK
| |
Collapse
|