1
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Abdolmaleki S, Ganjalikhani hakemi M, Ganjalikhany MR. An in silico investigation on the binding site preference of PD-1 and PD-L1 for designing antibodies for targeted cancer therapy. PLoS One 2024; 19:e0304270. [PMID: 39052609 PMCID: PMC11271968 DOI: 10.1371/journal.pone.0304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer control and treatment remain a significant challenge in cancer therapy and recently immune checkpoints has considered as a novel treatment strategy to develop anti-cancer drugs. Many cancer types use the immune checkpoints and its ligand, PD-1/PD-L1 pathway, to evade detection and destruction by the immune system, which is associated with altered effector function of PD-1 and PD-L1 overexpression on cancer cells to deactivate T cells. In recent years, mAbs have been employed to block immune checkpoints, therefore normalization of the anti-tumor response has enabled the scientists to develop novel biopharmaceuticals. In vivo affinity maturation of antibodies in targeted therapy has sometimes failed, and current experimental methods cannot accommodate the accurate structural details of protein-protein interactions. Therefore, determining favorable binding sites on the protein surface for modulator design of these interactions is a major challenge. In this study, we used the in silico methods to identify favorable binding sites on the PD-1 and PD-L1 and to optimize mAb variants on a large scale. At first, all the binding areas on PD-1 and PD-L1 have been identified. Then, using the RosettaDesign protocol, thousands of antibodies have been generated for 11 different regions on PD-1 and PD-L1 and then the designs with higher stability, affinity, and shape complementarity were selected. Next, molecular dynamics simulations and MM-PBSA analysis were employed to understand the dynamic, structural features of the complexes and measure the binding affinity of the final designs. Our results suggest that binding sites 1, 3 and 6 on PD-1 and binding sites 9 and 11 on PD-L1 can be regarded as the most appropriate sites for the inhibition of PD-1-PD-L1 interaction by the designed antibodies. This study provides comprehensive information regarding the potential binding epitopes on PD-1 which could be considered as hotspots for designing potential biopharmaceuticals. We also showed that mutations in the CDRs regions will rearrange the interaction pattern between the designed antibodies and targets (PD-1 and PD-L1) with improved affinity to effectively inhibit protein-protein interaction and block the immune checkpoint.
Collapse
Affiliation(s)
- Sarah Abdolmaleki
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mazdak Ganjalikhani hakemi
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
3
|
Tenthorey JL, del Banco S, Ramzan I, Klingenberg H, Liu C, Emerman M, Malik HS. Indels allow antiviral proteins to evolve functional novelty inaccessible by missense mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592993. [PMID: 38765965 PMCID: PMC11100679 DOI: 10.1101/2024.05.07.592993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antiviral proteins often evolve rapidly at virus-binding interfaces to defend against new viruses. We investigated whether antiviral adaptation via missense mutations might face limits, which insertion or deletion mutations (indels) could overcome. We report one such case of a nearly insurmountable evolutionary challenge: the human anti-retroviral protein TRIM5α requires more than five missense mutations in its specificity-determining v1 loop to restrict a divergent simian immunodeficiency virus (SIV). However, duplicating just one amino acid in v1 enables human TRIM5α to potently restrict SIV in a single evolutionary step. Moreover, natural primate TRIM5α v1 loops have evolved indels that confer novel antiviral specificities. Thus, indels enable antiviral proteins to overcome viral challenges inaccessible by missense mutations, revealing the potential of these often-overlooked mutations in driving protein innovation.
Collapse
Affiliation(s)
- Jeannette L. Tenthorey
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Serena del Banco
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
| | - Ishrak Ramzan
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Hayley Klingenberg
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Chang Liu
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Division of Human Biology, Fred Hutchinson Cancer Center; Seattle, USA
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Howard Hughes Medical Investigator, Fred Hutchinson Cancer Center; Seattle, USA
| |
Collapse
|
4
|
Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, Wang P, Zhang M, Wang Y, Feng Y, Huang H, de Marco A. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization. Int J Biol Macromol 2023; 247:125733. [PMID: 37423452 DOI: 10.1016/j.ijbiomac.2023.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ping Wang
- New Technology R&D Department, Tianjin Modern Innovative TCM Technology Company Limited, Tianjin 300392, China
| | - Miao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Yuli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research Institute, Tianjin Key Laboratory of Quality Control in Chinese Medicine, Tianjin 300457, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Yuanhang Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia.
| |
Collapse
|
5
|
England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE, Houslay KF, Erngren T, Penney M, Majithiya JB, Rapley L, Sims DA, Hollins C, Hinchy EC, Strain MD, Kemp BP, Corkill DJ, May RD, Vousden KA, Butler RJ, Mustelin T, Vaughan TJ, Lowe DC, Colley C, Cohen ES. Tozorakimab (MEDI3506): an anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Sci Rep 2023; 13:9825. [PMID: 37330528 PMCID: PMC10276851 DOI: 10.1038/s41598-023-36642-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.
Collapse
Affiliation(s)
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Ian Christopher Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sara Carmen
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Teodor Erngren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jayesh B Majithiya
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Laura Rapley
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dorothy A Sims
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Claire Hollins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth C Hinchy
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Dominic J Corkill
- Bioscience In Vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard D May
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - David C Lowe
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
6
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
7
|
Miton CM, Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023; 62:148-157. [PMID: 35830609 DOI: 10.1021/acs.biochem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, protein engineers have studied nature and borrowed its tricks to accelerate protein evolution in the test tube. While there have been considerable advances, our ability to generate new proteins in the laboratory is seemingly limited. One explanation for these shortcomings may be that insertions and deletions (indels), which frequently arise in nature, are largely overlooked during protein engineering campaigns. The profound effect of indels on protein structures, by way of drastic backbone alterations, could be perceived as "saltation" events that bring about significant phenotypic changes in a single mutational step. Should we leverage these effects to accelerate protein engineering and gain access to unexplored regions of adaptive landscapes? In this Perspective, we describe the role played by indels in the functional diversification of proteins in nature and discuss their untapped potential for protein engineering, despite their often-destabilizing nature. We hope to spark a renewed interest in indels, emphasizing that their wider study and use may prove insightful and shape the future of protein engineering by unlocking unique functional changes that substitutions alone could never achieve.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| |
Collapse
|
8
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
9
|
Laroche A, Orsini Delgado ML, Chalopin B, Cuniasse P, Dubois S, Sierocki R, Gallais F, Debroas S, Bellanger L, Simon S, Maillère B, Nozach H. Deep mutational engineering of broadly-neutralizing nanobodies accommodating SARS-CoV-1 and 2 antigenic drift. MAbs 2022; 14:2076775. [PMID: 35593235 PMCID: PMC9132424 DOI: 10.1080/19420862.2022.2076775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.
Collapse
Affiliation(s)
- Adrien Laroche
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Benjamin Chalopin
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Cuniasse
- CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphaël Sierocki
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.,Deeptope SAS, Massy, France
| | - Fabrice Gallais
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Stéphanie Debroas
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Laurent Bellanger
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Stéphanie Simon
- CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ye W, Liu X, He R, Gou L, Lu M, Yang G, Wen J, Wang X, Liu F, Ma S, Qian W, Jia S, Ding T, Sun L, Gao W. Improving antibody affinity through <i>in vitro</i> mutagenesis in complementarity determining regions. J Biomed Res 2022; 36:155-166. [PMID: 35545451 PMCID: PMC9179109 DOI: 10.7555/jbr.36.20220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases. However, most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity maturation, which is triggered by antigen immunization. It is therefore necessary to engineer the affinity of these antibodies by way of in vitro assaying. In this study, we optimized the affinity of two human monoclonal antibodies which were isolated by phage display in a previous related study. For the 42A1 antibody, which targets the liver cancer antigen glypican-3, the variant T57H in the second complementarity-determining region of the heavy chain (CDR-H2) exhibited a 2.6-fold improvement in affinity, as well as enhanced cell-binding activity. For the I4A3 antibody to severe acute respiratory syndrome coronavirus 2, beneficial single mutations in CDR-H2 and CDR-H3 were randomly combined to select the best synergistic mutations. Among these, the mutation S53P-S98T improved binding affinity (about 3.7 fold) and the neutralizing activity (about 12 fold) compared to the parent antibody. Taken together, single mutations of key residues in antibody CDRs were enough to increase binding affinity with improved antibody functions. The mutagenic combination of key residues in different CDRs creates additive enhancements. Therefore, this study provides a safe and effective in vitro strategy for optimizing antibody affinity.
Collapse
Affiliation(s)
- Wei Ye
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruiting He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liming Gou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ming Lu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gang Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Wen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xufei Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fang Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sujuan Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weifeng Qian
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215001, China
| | - Shaochang Jia
- Department of Biotherapy, Nanjing Jinling Hospital, Nanjing, Jiangsu 210002, China
| | - Tong Ding
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luan Sun
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Wei Gao and Luan Sun, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mails:
and
| | - Wei Gao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Wei Gao and Luan Sun, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mails:
and
| |
Collapse
|
11
|
Schenkmayerova A, Pinto GP, Toul M, Marek M, Hernychova L, Planas-Iglesias J, Daniel Liskova V, Pluskal D, Vasina M, Emond S, Dörr M, Chaloupkova R, Bednar D, Prokop Z, Hollfelder F, Bornscheuer UT, Damborsky J. Engineering the protein dynamics of an ancestral luciferase. Nat Commun 2021; 12:3616. [PMID: 34127663 PMCID: PMC8203615 DOI: 10.1038/s41467-021-23450-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.
Collapse
Affiliation(s)
- Andrea Schenkmayerova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gaspar P Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joan Planas-Iglesias
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Daniel Liskova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Pluskal
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Vasina
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stephane Emond
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Dörr
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Bednar
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
12
|
Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies. Emerg Top Life Sci 2021; 5:601-608. [PMID: 33660765 PMCID: PMC8726058 DOI: 10.1042/etls20200331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Affinity maturation is a key technique in protein engineering which is used to improve affinity and binding interactions in vitro, a process often required to fulfil the therapeutic potential of antibodies. There are many available display technologies and maturation methods developed over the years, which have been instrumental in the production of therapeutic antibodies. However, due to the inherent limitations in display capacity of these technologies, accommodation of expansive and complex library builds is still a challenge. In this article, we discuss our recent efforts in the affinity maturation of a difficult antibody lineage using an unbiased approach, which sought to explore a larger sequence space through the application of DNA recombination and shuffling techniques across the entire antibody region and selections using ribosome display. We also highlight the key features of several display technologies and diversification methods, and discuss the strategies devised by different groups in response to different challenges. Particular attention is drawn to examples which are aimed at the expansion of sequence, structural or experimental diversity through different means and approaches. Here, we provide our perspectives on these methodologies and the considerations involved in the design of effective strategies for the directed evolution of antibodies.
Collapse
|