1
|
Lanzilotto M, Dal Monte O, Diano M, Panormita M, Battaglia S, Celeghin A, Bonini L, Tamietto M. Learning to fear novel stimuli by observing others in the social affordance framework. Neurosci Biobehav Rev 2025; 169:106006. [PMID: 39788170 DOI: 10.1016/j.neubiorev.2025.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL. In this context, we highlight the potential role of subcortical structures of ancient evolutionary origin in encoding social signals and argue that they play a pivotal function in transforming observed emotional expressions into adaptive behavioural responses. This perspective extends the social affordance hypothesis to subcortical circuits underlying vicarious learning in social contexts. Recognising the interplay between these two modes of fear learning paves the way for new empirical studies focusing on interspecies comparisons and broadens the boundaries of our knowledge of fear acquisition.
Collapse
Affiliation(s)
- M Lanzilotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Psychology, University of Turin, Turin, Italy.
| | - O Dal Monte
- Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, Yale University, New Haven, USA
| | - M Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - M Panormita
- Department of Psychology, University of Turin, Turin, Italy; Department of Neuroscience, KU Leuven University, Leuven, Belgium
| | - S Battaglia
- Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Bologna, Cesena, Italy
| | - A Celeghin
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Tamietto
- Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy.
| |
Collapse
|
2
|
Chivukula S, Aflalo T, Zhang C, Rosario ER, Bari A, Pouratian N, Andersen RA. Population encoding of observed and actual somatosensations in the human posterior parietal cortex. Proc Natl Acad Sci U S A 2025; 122:e2316012121. [PMID: 39793054 PMCID: PMC11725854 DOI: 10.1073/pnas.2316012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/29/2024] [Indexed: 01/12/2025] Open
Abstract
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations. Here, we hypothesize that mirror-like responses represent one facet of a broader framework in which our brains engage internal models for cognition. We recorded populations of single neurons in the human posterior parietal cortex (PPC) of a brain-machine interface clinical trial participant implanted with a microelectrode array while she either experienced actual touch, or observed diverse tactile stimuli applied to other individuals. Two body locations were tested, on each of the participant and other individuals. Some neurons exhibited mirror-like properties, consistent with earlier literature. However, they were fragile, breaking with increased task complexity. Population responses were better characterized by generalizable and compositional basic-level features encoded within neural subspaces. These features enable the population to respond to diverse actual and observed touch stimuli and are recruited similarly for similar forms of touch. Mirror-like neurons belong within these subspaces, contributing more globally to compositionality and generalizability. We speculate that at a population-level, human PPC manifests an internal model for touch, and that cognition unfolds in the high-level human cortex by versatility in its representational building blocks. In a broad sense, we speculate that the population features we demonstrate support a broad mechanism by which the high-level human cortex enables understanding.
Collapse
Affiliation(s)
- Srinivas Chivukula
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX75390
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| | - Tyson Aflalo
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| | - Carey Zhang
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| | - Emily R. Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA91767
| | - Ausaf Bari
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA91767
- Department of Neurological Surgery, University of California, Los Angeles, CA90095
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX75390
| | - Richard A. Andersen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Amita H, Koyano KW, Kunimatsu J. Neuronal Mechanisms Underlying Face Recognition in Non-human Primates. JAPANESE PSYCHOLOGICAL RESEARCH 2024; 66:416-442. [PMID: 39611029 PMCID: PMC11601097 DOI: 10.1111/jpr.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 11/30/2024]
Abstract
Humans and primates rely on visual face recognition for social interactions. Damage to specific brain areas causes prosopagnosia, a condition characterized by the inability to recognize familiar faces, indicating the presence of specialized brain areas for face processing. A breakthrough finding came from a non-human primate (NHP) study conducted in the early 2000s; it was the first to identify multiple face processing areas in the temporal lobe, termed face patches. Subsequent studies have demonstrated the unique role of each face patch in the structural analysis of faces. More recent studies have expanded these findings by exploring the role of face patch networks in social and memory functions and the importance of early face exposure in the development of the system. In this review, we discuss the neuronal mechanisms responsible for analyzing facial features, categorizing faces, and associating faces with memory and social contexts within both the cerebral cortex and subcortical areas. Use of NHPs in neuropsychological and neurophysiological studies can highlight the mechanistic aspects of the neuronal circuit underlying face recognition at both the single-neuron and whole-brain network levels.
Collapse
|
4
|
Borra E, Gerbella M, Rozzi S, Luppino G. Neural substrate for the engagement of the ventral visual stream in motor control in the macaque monkey. Cereb Cortex 2024; 34:bhae354. [PMID: 39227311 DOI: 10.1093/cercor/bhae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The present study aimed to describe the cortical connectivity of a sector located in the ventral bank of the superior temporal sulcus in the macaque (intermediate area TEa and TEm [TEa/m]), which appears to represent the major source of output of the ventral visual stream outside the temporal lobe. The retrograde tracer wheat germ agglutinin was injected in the intermediate TEa/m in four macaque monkeys. The results showed that 58-78% of labeled cells were located within ventral visual stream areas other than the TE complex. Outside the ventral visual stream, there were connections with the memory-related medial temporal area 36 and the parahippocampal cortex, orbitofrontal areas involved in encoding subjective values of stimuli for action selection, and eye- or hand-movement related parietal (LIP, AIP, and SII), prefrontal (12r, 45A, and 45B) areas, and a hand-related dysgranular insula field. Altogether these data provide a solid substrate for the engagement of the ventral visual stream in large scale cortical networks for skeletomotor or oculomotor control. Accordingly, the role of the ventral visual stream could go beyond pure perceptual processes and could be also finalized to the neural mechanisms underlying the control of voluntary motor behavior.
Collapse
Affiliation(s)
- Elena Borra
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Marzio Gerbella
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Rozzi
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Giuseppe Luppino
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| |
Collapse
|
5
|
Maranesi M, Lanzilotto M, Arcuri E, Bonini L. Mixed selectivity in monkey anterior intraparietal area during visual and motor processes. Prog Neurobiol 2024; 236:102611. [PMID: 38604583 DOI: 10.1016/j.pneurobio.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Classical studies suggest that the anterior intraparietal area (AIP) contributes to the encoding of specific information such as objects and actions of self and others, through a variety of neuronal classes, such as canonical, motor and mirror neurons. However, these studies typically focused on a single variable, leaving it unclear whether distinct sets of AIP neurons encode a single or multiple sources of information and how multimodal coding emerges. Here, we chronically recorded monkey AIP neurons in a variety of tasks and conditions classically employed in separate experiments. Most cells exhibited mixed selectivity for observed objects, executed actions, and observed actions, enhanced when this information came from the monkey's peripersonal working space. In contrast with the classical view, our findings indicate that multimodal coding emerges in AIP from partially-mixed selectivity of individual neurons for a variety of information relevant for planning actions directed to both physical objects and other subjects.
Collapse
Affiliation(s)
- Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy.
| | - Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - Edoardo Arcuri
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| |
Collapse
|
6
|
Fornia L, Leonetti A, Puglisi G, Rossi M, Viganò L, Della Santa B, Simone L, Bello L, Cerri G. The parietal architecture binding cognition to sensorimotor integration: a multimodal causal study. Brain 2024; 147:297-310. [PMID: 37715997 PMCID: PMC10766244 DOI: 10.1093/brain/awad316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023] Open
Abstract
Despite human's praxis abilities are unique among primates, comparative observations suggest that these cognitive motor skills could have emerged from exploitation and adaptation of phylogenetically older building blocks, namely the parieto-frontal networks subserving prehension and manipulation. Within this framework, investigating to which extent praxis and prehension-manipulation overlap and diverge within parieto-frontal circuits could help in understanding how human cognition shapes hand actions. This issue has never been investigated by combining lesion mapping and direct electrophysiological approaches in neurosurgical patients. To this purpose, 79 right-handed left-brain tumour patient candidates for awake neurosurgery were selected based on inclusion criteria. First, a lesion mapping was performed in the early postoperative phase to localize the regions associated with an impairment in praxis (imitation of meaningless and meaningful intransitive gestures) and visuo-guided prehension (reaching-to-grasping) abilities. Then, lesion results were anatomically matched with intraoperatively identified cortical and white matter regions, whose direct electrical stimulation impaired the Hand Manipulation Task. The lesion mapping analysis showed that prehension and praxis impairments occurring in the early postoperative phase were associated with specific parietal sectors. Dorso-mesial parietal resections, including the superior parietal lobe and precuneus, affected prehension performance, while resections involving rostral intraparietal and inferior parietal areas affected praxis abilities (covariate clusters, 5000 permutations, cluster-level family-wise error correction P < 0.05). The dorsal bank of the rostral intraparietal sulcus was associated with both prehension and praxis (overlap of non-covariate clusters). Within praxis results, while resection involving inferior parietal areas affected mainly the imitation of meaningful gestures, resection involving intraparietal areas affected both meaningless and meaningful gesture imitation. In parallel, the intraoperative electrical stimulation of the rostral intraparietal and the adjacent inferior parietal lobe with their surrounding white matter during the hand manipulation task evoked different motor impairments, i.e. the arrest and clumsy patterns, respectively. When integrating lesion mapping and intraoperative stimulation results, it emerges that imitation of praxis gestures first depends on the integrity of parietal areas within the dorso-ventral stream. Among these areas, the rostral intraparietal and the inferior parietal area play distinct roles in praxis and sensorimotor process controlling manipulation. Due to its visuo-motor 'attitude', the rostral intraparietal sulcus, putative human homologue of monkey anterior intraparietal, might enable the visuo-motor conversion of the observed gesture (direct pathway). Moreover, its functional interaction with the adjacent, phylogenetic more recent, inferior parietal areas might contribute to integrate the semantic-conceptual knowledge (indirect pathway) within the sensorimotor workflow, contributing to the cognitive upgrade of hand actions.
Collapse
Affiliation(s)
- Luca Fornia
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Antonella Leonetti
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Guglielmo Puglisi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Marco Rossi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luca Viganò
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Bianca Della Santa
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luciano Simone
- Department of Medicine and Surgery, Università Degli Studi di Parma, Parma, 43125, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Gabriella Cerri
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| |
Collapse
|
7
|
Zhuang T, Kabulska Z, Lingnau A. The Representation of Observed Actions at the Subordinate, Basic, and Superordinate Level. J Neurosci 2023; 43:8219-8230. [PMID: 37798129 PMCID: PMC10697398 DOI: 10.1523/jneurosci.0700-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Actions can be planned and recognized at different hierarchical levels, ranging from very specific (e.g., to swim backstroke) to very broad (e.g., locomotion). Understanding the corresponding neural representation is an important prerequisite to reveal how our brain flexibly assigns meaning to the world around us. To address this question, we conducted an event-related fMRI study in male and female human participants in which we examined distinct representations of observed actions at the subordinate, basic and superordinate level. Using multiple regression representational similarity analysis (RSA) in predefined regions of interest, we found that the three different taxonomic levels were best captured by patterns of activations in bilateral lateral occipitotemporal cortex (LOTC), showing the highest similarity with the basic level model. A whole-brain multiple regression RSA revealed that information unique to the basic level was captured by patterns of activation in dorsal and ventral portions of the LOTC and in parietal regions. By contrast, the unique information for the subordinate level was limited to bilateral occipitotemporal cortex, while no single cluster was obtained that captured unique information for the superordinate level. The behaviorally established action space was best captured by patterns of activation in the LOTC and superior parietal cortex, and the corresponding neural patterns of activation showed the highest similarity with patterns of activation corresponding to the basic level model. Together, our results suggest that occipitotemporal cortex shows a preference for the basic level model, with flexible access across the subordinate and the basic level.SIGNIFICANCE STATEMENT The human brain captures information at varying levels of abstraction. It is debated which brain regions host representations across different hierarchical levels, with some studies emphasizing parietal and premotor regions, while other studies highlight the role of the lateral occipitotemporal cortex (LOTC). To shed light on this debate, here we examined the representation of observed actions at the three taxonomic levels suggested by Rosch et al. (1976) Our results highlight the role of the LOTC, which hosts a shared representation across the subordinate and the basic level, with the highest similarity with the basic level model. These results shed new light on the hierarchical organization of observed actions and provide insights into the neural basis underlying the basic level advantage.
Collapse
Affiliation(s)
- Tonghe Zhuang
- Faculty of Human Sciences, Institute of Psychology, Chair of Cognitive Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| | - Zuzanna Kabulska
- Faculty of Human Sciences, Institute of Psychology, Chair of Cognitive Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| | - Angelika Lingnau
- Faculty of Human Sciences, Institute of Psychology, Chair of Cognitive Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Donelli D, Lazzeroni D, Rizzato M, Antonelli M. Silence and its effects on the autonomic nervous system: A systematic review. PROGRESS IN BRAIN RESEARCH 2023; 280:103-144. [PMID: 37714570 DOI: 10.1016/bs.pbr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
This systematic review explores the influence of silence on the autonomic nervous system. The Polyvagal Theory has been used as a reference model to describe the autonomic nervous system by explaining its role in emotional regulation, social engagement, and adaptive physiological responses. PubMed, Scopus, PsycInfo, EMBASE, and Google Scholar were systematically searched up until July 2023 for relevant studies. The literature search yielded 511 results, and 37 studies were eventually included in this review. Silence affects the autonomic nervous system differently based on whether it is inner or outer silence. Inner silence enhances activity of the ventral vagus, favoring social engagement, and reducing sympathetic nervous system activity and physiological stress. Outer silence, conversely, can induce a heightened state of alertness, potentially triggering vagal brake removal and sympathetic nervous system activation, though with training, it can foster inner silence, preventing such activation. The autonomic nervous system response to silence can also be influenced by other factors such as context, familiarity with silence, presence and quality of outer noise, and empathy.
Collapse
Affiliation(s)
- Davide Donelli
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Davide Lazzeroni
- Prevention and Rehabilitation Unit, IRCCS Fondazione Don Gnocchi, Parma, Italy
| | | | | |
Collapse
|
9
|
Grandi LC, Bruni S. Social Touch: Its Mirror-like Responses and Implications in Neurological and Psychiatric Diseases. NEUROSCI 2023; 4:118-133. [PMID: 39483320 PMCID: PMC11523712 DOI: 10.3390/neurosci4020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 11/03/2024] Open
Abstract
What is the significance of a touch encoded by slow-conducted unmyelinated C-tactile (CT) fibers? It is the so-called affiliative touch, which has a fundamental social impact. In humans, it has been demonstrated that the affiliative valence of this kind of touch is encoded by a dedicated central network, not involved in the encoding of discriminative touch, namely, the "social brain". Moreover, CT-related touch has significant consequences on the human autonomic system, not present in the case of discriminative touch, which does not involve CT fibers as the modulation of vagal tone. In addition, CT-related touch provokes central effects as well. An interesting finding is that CT-related touch can elicit "mirror-like responses" since there is evidence that we would have the same perception of a caress regardless of whether it would be felt or seen and that the same brain areas would be activated. Information from CT afferents in the posterior insular cortex likely provides a basis for encoding observed caresses. We also explored the application of this kind of touch in unphysiological conditions and in premature newborns. In the present literature review, we aim to (1) examine the effects of CT-related touch at autonomic and central levels and (2) highlight CT-related touch and mirror networks, seeking to draw a line of connection between them. Finally, the review aims to give an overview of the involvement of the CT system in some neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Laura Clara Grandi
- Department of Biotechnology and Biosciences, NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | |
Collapse
|
10
|
Yargholi E, Hossein-Zadeh GA, Vaziri-Pashkam M. Two distinct networks containing position-tolerant representations of actions in the human brain. Cereb Cortex 2023; 33:1462-1475. [PMID: 35511702 PMCID: PMC10310977 DOI: 10.1093/cercor/bhac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Humans can recognize others' actions in the social environment. This action recognition ability is rarely hindered by the movement of people in the environment. The neural basis of this position tolerance for observed actions is not fully understood. Here, we aimed to identify brain regions capable of generalizing representations of actions across different positions and investigate the representational content of these regions. In a functional magnetic resonance imaging experiment, participants viewed point-light displays of different human actions. Stimuli were presented in either the upper or the lower visual field. Multivariate pattern analysis and a surface-based searchlight approach were employed to identify brain regions that contain position-tolerant action representation: Classifiers were trained with patterns in response to stimuli presented in one position and were tested with stimuli presented in another position. Results showed above-chance classification in the left and right lateral occipitotemporal cortices, right intraparietal sulcus, and right postcentral gyrus. Further analyses exploring the representational content of these regions showed that responses in the lateral occipitotemporal regions were more related to subjective judgments, while those in the parietal regions were more related to objective measures. These results provide evidence for two networks that contain abstract representations of human actions with distinct representational content.
Collapse
Affiliation(s)
- Elahé Yargholi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836484, Iran
- Laboratory of Biological Psychology, Department of Brain and Cognition, Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven 3714, Belgium
| | - Gholam-Ali Hossein-Zadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836484, Iran
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Maryam Vaziri-Pashkam
- Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), Bethesda, MD 20814, United States
| |
Collapse
|
11
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
12
|
Mirror neurons 30 years later: implications and applications. Trends Cogn Sci 2022; 26:767-781. [PMID: 35803832 DOI: 10.1016/j.tics.2022.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Mirror neurons (MNs) were first described in a seminal paper in 1992 as a class of monkey premotor cells discharging during both action execution and observation. Despite their debated origin and function, recent studies in several species, from birds to humans, revealed that beyond MNs properly so called, a variety of cell types distributed among multiple motor, sensory, and emotional brain areas form a 'mirror mechanism' more complex and flexible than originally thought, which has an evolutionarily conserved role in social interaction. Here, we trace the current limits and envisage the future trends of this discovery, showing that it inspired translational research and the development of new neurorehabilitation approaches, and constitutes a point of no return in social and affective neuroscience.
Collapse
|
13
|
Abstract
Ten years ago, Perspectives in Psychological Science published the Mirror Neuron Forum, in which authors debated the role of mirror neurons in action understanding, speech, imitation, and autism and asked whether mirror neurons are acquired through visual-motor learning. Subsequent research on these themes has made significant advances, which should encourage further, more systematic research. For action understanding, multivoxel pattern analysis, patient studies, and brain stimulation suggest that mirror-neuron brain areas contribute to low-level processing of observed actions (e.g., distinguishing types of grip) but not to high-level action interpretation (e.g., inferring actors' intentions). In the area of speech perception, although it remains unclear whether mirror neurons play a specific, causal role in speech perception, there is compelling evidence for the involvement of the motor system in the discrimination of speech in perceptually noisy conditions. For imitation, there is strong evidence from patient, brain-stimulation, and brain-imaging studies that mirror-neuron brain areas play a causal role in copying of body movement topography. In the area of autism, studies using behavioral and neurological measures have tried and failed to find evidence supporting the "broken-mirror theory" of autism. Furthermore, research on the origin of mirror neurons has confirmed the importance of domain-general visual-motor associative learning rather than canalized visual-motor learning, or motor learning alone.
Collapse
Affiliation(s)
- Cecilia Heyes
- All Souls College, University of Oxford
- Department of Experimental Psychology, University of Oxford
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London
| |
Collapse
|
14
|
Copelli F, Rovetti J, Ammirante P, Russo FA. Human mirror neuron system responsivity to unimodal and multimodal presentations of action. Exp Brain Res 2021; 240:537-548. [PMID: 34817643 DOI: 10.1007/s00221-021-06266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
This study aims to clarify unresolved questions from two earlier studies by McGarry et al. Exp Brain Res 218(4): 527-538, 2012 and Kaplan and Iacoboni Cogn Process 8: 103-113, 2007 on human mirror neuron system (hMNS) responsivity to multimodal presentations of actions. These questions are: (1) whether the two frontal areas originally identified by Kaplan and Iacoboni (ventral premotor cortex [vPMC] and inferior frontal gyrus [IFG]) are both part of the hMNS (i.e., do they respond to execution as well as observation), (2) whether both areas yield effects of biologicalness (biological, control) and modality (audio, visual, audiovisual), and (3) whether the vPMC is preferentially responsive to multimodal input. To resolve these questions about the hMNS, we replicated and extended McGarry et al.'s electroencephalography (EEG) study, while incorporating advanced source localization methods. Participants were asked to execute movements (ripping paper) as well as observe those movements across the same three modalities (audio, visual, and audiovisual), all while 64-channel EEG data was recorded. Two frontal sources consistent with those identified in prior studies showed mu event-related desynchronization (mu-ERD) under execution and observation conditions. These sources also showed a greater response to biological movement than to control stimuli as well as a distinct visual advantage, with greater responsivity to visual and audiovisual compared to audio conditions. Exploratory analyses of mu-ERD in the vPMC under visual and audiovisual observation conditions suggests that the hMNS tracks the magnitude of visual movement over time.
Collapse
Affiliation(s)
- Fran Copelli
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Joseph Rovetti
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Paolo Ammirante
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Frank A Russo
- Department of Psychology, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
15
|
Wurm MF, Caramazza A. Two 'what' pathways for action and object recognition. Trends Cogn Sci 2021; 26:103-116. [PMID: 34702661 DOI: 10.1016/j.tics.2021.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
The ventral visual stream is conceived as a pathway for object recognition. However, we also recognize the actions an object can be involved in. Here, we show that action recognition critically depends on a pathway in lateral occipitotemporal cortex, partially overlapping and topographically aligned with object representations that are precursors for action recognition. By contrast, object features that are more relevant for object recognition, such as color and texture, are typically found in ventral occipitotemporal cortex. We argue that occipitotemporal cortex contains similarly organized lateral and ventral 'what' pathways for action and object recognition, respectively. This account explains a number of observed phenomena, such as the duplication of object domains and the specific representational profiles in lateral and ventral cortex.
Collapse
Affiliation(s)
- Moritz F Wurm
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy.
| | - Alfonso Caramazza
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy; Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Zarka D, Cebolla AM, Cheron G. [Mirror neurons, neural substrate of action understanding?]. Encephale 2021; 48:83-91. [PMID: 34625217 DOI: 10.1016/j.encep.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022]
Abstract
In 1992, the Laboratory of Human Physiology at the University of Parma (Italy) publish a study describing "mirror" neurons in the macaque that activate both when the monkey performs an action and when it observes an experimenter performing the same action. The research team behind this discovery postulates that the mirror neurons system is the neural basis of our ability to understand the actions of others, through the motor mapping of the observed action on the observer's motor repertory (direct-matching hypothesis). Nevertheless, this conception met serious criticism. These critics attempt to relativize their function by placing them within a network of neurocognitive and sensory interdependencies. In short, the essential characteristic of these neurons is to combine the processing of sensory information, especially visual, with that of motor information. Their elementary function would be to provide a motor simulation of the observed action, based on visual information from it. They can contribute, with other non-mirror areas, to the identification/prediction of the action goal and to the interpretation of the intention of the actor performing it. Studying the connectivity and high frequency synchronizations of the different brain areas involved in action observation would likely provide important information about the dynamic contribution of mirror neurons to "action understanding". The aim of this review is to provide an up-to-date analysis of the scientific evidence related to mirror neurons and their elementary functions, as well as to shed light on the contribution of these neurons to our ability to interpret and understand others' actions.
Collapse
Affiliation(s)
- D Zarka
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique; Unité de Recherche en Sciences de l'Ostéopathie, faculté des Sciences de la Motricité, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique.
| | - A M Cebolla
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique
| | - G Cheron
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique; Laboratoire d'électrophysiologie, université de Mons, 7000 Mons, Belgique
| |
Collapse
|
17
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
18
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
19
|
Local and system mechanisms for action execution and observation in parietal and premotor cortices. Curr Biol 2021; 31:2819-2830.e4. [PMID: 33984266 PMCID: PMC8279740 DOI: 10.1016/j.cub.2021.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
The action observation network (AON) includes a system of brain areas largely shared with action execution in both human and nonhuman primates. Yet temporal and tuning specificities of distinct areas and of physiologically identified neuronal classes in the encoding of self and others’ action remain unknown. We recorded the activity of 355 single units from three crucial nodes of the AON, the anterior intraparietal area (AIP), and premotor areas F5 and F6, while monkeys performed a Go/No-Go grasping task and observed an experimenter performing it. At the system level, during task execution, F6 displays a prevalence of suppressed neurons and signals whether an action has to be performed, whereas AIP and F5 share a prevalence of facilitated neurons and remarkable target selectivity; during task observation, F5 stands out for its unique prevalence of facilitated neurons and its stronger and earlier modulation than AIP and F6. By applying unsupervised clustering of spike waveforms, we found distinct cell classes unevenly distributed across areas, with different firing properties and carrying specific visuomotor signals. Broadly spiking neurons exhibited a balanced amount of facilitated and suppressed activity during action execution and observation, whereas narrower spiking neurons showed more mutually facilitated responses during the execution of one’s own and others’ action, particularly in areas AIP and F5. Our findings elucidate the time course of activity and firing properties of neurons in the AON during one’s own and others’ action, from the system level of anatomically distinct areas to the local level of physiologically distinct cell classes. F6 neurons show a prevalence of suppressed activity, encoding whether to act Area F5 and AIP share a prevalence of facilitated neurons and target selectivity Across-areas, waveform-based clustering distinguished three neuronal classes Narrow-spiking neurons exhibit mutual modulation during self and others’ action
Collapse
|
20
|
Orban GA, Lanzilotto M, Bonini L. From Observed Action Identity to Social Affordances. Trends Cogn Sci 2021; 25:493-505. [PMID: 33745819 DOI: 10.1016/j.tics.2021.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior.
Collapse
Affiliation(s)
- G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Lanzilotto
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
21
|
Gerbella M, Borra E, Pothof F, Lanzilotto M, Livi A, Fogassi L, Paul O, Orban G, Ruther P, Bonini L. Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey. J Neural Eng 2021; 18. [PMID: 33461177 DOI: 10.1088/1741-2552/abdd11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Previous studies demonstrated the possibility to fabricate stereo-electroencephalography (SEEG) probes with high channel count and great design freedom, which incorporate macro- as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials and multi-unit activity in the macaque monkey as early as one hour after implantation, yielding stable single-unit activity for up to 26 days after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human applications, safety data are needed. Thus, in the present study we evaluate the biocompatibility of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site. APPROACH Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time. MAIN RESULTS The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50 µm and a modest increase in the number of astrocytes within 100 µm. SIGNIFICANCE In the light of previous electrophysiological findings, the present biocompatibility data suggest the potential usefulness and safety of this probe for human applications.
Collapse
Affiliation(s)
- Marzio Gerbella
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, 43126, ITALY
| | - Elena Borra
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| | - Frederick Pothof
- University of Freiburg, Germany, 79085, Freiburg, Fahnenbergplatz, Freiburg im Breisgau, Baden-Württemberg, 79085, GERMANY
| | - Marco Lanzilotto
- Università degli Studi di Torino, Via Verdi 8, Torino, Piemonte, 10124, ITALY
| | - Alessandro Livi
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| | - Leonardo Fogassi
- Dipartimento di Neuroscienze, Università degli studi di Parma, Via Gramsci 14, Parma, 43126, ITALY
| | - Oliver Paul
- University of Freiburg, Germany, 79085, Freiburg, Fahnenbergplatz, Freiburg im Breisgau, Baden-Württemberg, 79085, GERMANY
| | - Guy Orban
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| | - Patrick Ruther
- Department of Microsystems Engineering, University of Freiburg, Germany, 79085, Freiburg, Fahnenbergplatz, Freiburg, 79085, GERMANY
| | - Luca Bonini
- Brain Center for Social and Motor Cognition, University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| |
Collapse
|
22
|
Aflalo T, Zhang CY, Rosario ER, Pouratian N, Orban GA, Andersen RA. A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. SCIENCE ADVANCES 2020; 6:6/43/eabb3984. [PMID: 33097536 PMCID: PMC7608826 DOI: 10.1126/sciadv.abb3984] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
High-level sensory and motor cortical areas are activated when processing the meaning of language, but it is unknown whether, and how, words share a neural substrate with corresponding sensorimotor representations. We recorded from single neurons in human posterior parietal cortex (PPC) while participants viewed action verbs and corresponding action videos from multiple views. We find that PPC neurons exhibit a common neural substrate for action verbs and observed actions. Further, videos were encoded with mixtures of invariant and idiosyncratic responses across views. Action verbs elicited selective responses from a fraction of these invariant and idiosyncratic neurons, without preference, thus associating with a statistical sampling of the diverse sensory representations related to the corresponding action concept. Controls indicated that the results are not the product of visual imagery or arbitrary learned associations. Our results suggest that language may activate the consolidated visual experience of the reader.
Collapse
Affiliation(s)
- T Aflalo
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA.
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA
| | - C Y Zhang
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA
| | - E R Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - N Pouratian
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - R A Andersen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
23
|
Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity. Neuroimage 2020; 224:117398. [PMID: 32971263 DOI: 10.1016/j.neuroimage.2020.117398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022] Open
Abstract
Observing others performing motor acts like grasping has been shown to elicit neural responses in the observer`s parieto-frontal motor network, which typically becomes active when the observer would perform these actions him/herself. While some human studies suggested strongest motor resonance during observation of first person or egocentric perspectives compared to third person or allocentric perspectives, other research either report the opposite or did not find any viewpoint-related preferences in parieto-premotor cortices. Furthermore, it has been suggested that these motor resonance effects are lateralized in the parietal cortex depending on the viewpoint and identity of the observed effector (left vs right hand). Other studies, however, do not find such straightforward hand identity dependent motor resonance effects. In addition to these conflicting findings in human studies, to date, little is known about the modulatory role of viewing perspective and effector identity (left or right hand) on motor resonance effects in monkey parieto-premotor cortices. Here, we investigated the extent to which different viewpoints of observed conspecific hand actions yield motor resonance in rhesus monkeys using fMRI. Observing first person, lateral and third person viewpoints of conspecific hand actions yielded significant activations throughout the so-called action observation network, including STS, parietal and frontal cortices. Although region-of-interest analysis of parietal and premotor motor/mirror neuron regions AIP, PFG and F5, showed robust responses in these regions during action observation in general, a clear preference for egocentric or allocentric perspectives was not evident. Moreover, except for lateralized effects due to visual field biases, motor resonance in the monkey brain during grasping observation did not reflect hand identity dependent coding.
Collapse
|
24
|
Sawamura H, Urgen BA, Corbo D, Orban GA. A parietal region processing numerosity of observed actions: An FMRI study. Eur J Neurosci 2020; 52:4732-4750. [PMID: 32745369 PMCID: PMC7818403 DOI: 10.1111/ejn.14930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 11/29/2022]
Abstract
When observing others' behavior, it is important to perceive not only the identity of the observed actions (OAs), but also the number of times they were performed. Given the mounting evidence implicating posterior parietal cortex in action observation, and in particular that of manipulative actions, the aim of this study was to identify the parietal region, if any, that contributes to the processing of observed manipulative action (OMA) numerosity, using the functional magnetic resonance imaging technique. Twenty‐one right‐handed healthy volunteers performed two discrimination tasks while in the scanner, responding to video stimuli in which an actor performed manipulative actions on colored target balls that appeared four times consecutively. The subjects discriminated between two small numerosities of either OMAs (“Action” condition) or colors of balls (“Ball” condition). A significant difference between the “Action” and “Ball” conditions was observed in occipito‐temporal cortex and the putative human anterior intraparietal sulcus (phAIP) area as well as the third topographic map of numerosity‐selective neurons at the post‐central sulcus (NPC3) of the left parietal cortex. A further region of interest analysis of the group‐average data showed that at the single voxel level the latter area, more than any other parietal or occipito‐temporal numerosity map, favored numerosity of OAs. These results suggest that phAIP processes the identity of OMAs, while neighboring NPC3 likely processes the numerosity of the identified OAs.
Collapse
Affiliation(s)
- Hiromasa Sawamura
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Ophthalmology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Burcu A Urgen
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Psychology, Bilkent University, Ankara, Turkey.,Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey.,Aysel Sabuncu Brain Research Center and National Magnetic Resonance Research Center, Bilkent University (UMRAM), Ankara, Turkey
| | - Daniele Corbo
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|