1
|
Zhu Y, Lee BJ, Fujii S, Jonchhe S, Zhang H, Li A, Wang KJ, Rothenberg E, Modesti M, Zha S. The KU70-SAP domain has an overlapping function with DNA-PKcs in limiting the lateral movement of KU along DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609806. [PMID: 39253422 PMCID: PMC11383278 DOI: 10.1101/2024.08.26.609806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The non-homologous end-joining (NHEJ) pathway is critical for DNA double-strand break repair and is essential for lymphocyte development and maturation. The Ku70/Ku80 heterodimer (KU) binds to DNA ends, initiating NHEJ and recruiting additional factors, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that caps the ends and pushes KU inward. The C-terminus of Ku70 in higher eukaryotes includes a flexible linker and a SAP domain, whose physiological role remains poorly understood. To investigate this, we generated a mouse model with knock-in deletion of the SAP domain ( Ku70 ΔSAP/ΔSAP ). Ku70 ΔSAP supports KU stability and its recruitment to DNA damage sites in vivo . In contrast to the growth retardation and immunodeficiency seen in Ku70 -/- mice, Ku70 ΔSAP/ΔSAP mice show no defects in lymphocyte development and maturation. Structural modeling of KU on long dsDNA, but not dsRNA suggests that the SAP domain can bind to an adjacent major groove, where it can limit KU's rotation and lateral movement along the dsDNA. Accordingly, in the absence of DNA-PKcs that caps the ends, Ku70 ΔSAP fails to support stable DNA damage-induced KU foci. In DNA-PKcs -/- mice, Ku70 ΔSAP abrogates the leaky T cell development and reduces both the qualitative and quantitative aspects of residual V(D)J recombination. In the absence of DNA-PKcs, purified Ku70 ΔSAP has reduced affinity for DNA ends and dissociates more readily at lower concentration and accumulated as multimers at high concentration. These findings revealed a physiological role of the SAP domain in NHEJ by restricting KU rotation and lateral movement on DNA that is largely masked by DNA-PKcs. Highlight Ku70 is a conserved non-homologous end-joining (NHEJ) factor. Using genetically engineered mouse models and biochemical analyses, our study uncovered a previously unappreciated role of the C-terminal SAP domain of Ku70 in limiting the lateral movement of KU on DNA ends and ensuring end protection. The presence of DNA-PKcs partially masks this role of the SAP domain.
Collapse
|
2
|
Wu-Baer F, Wong M, Tschoe L, Lin CS, Jiang W, Zha S, Baer R. ATM/ATR Phosphorylation of CtIP on Its Conserved Sae2-like Domain Is Required for Genotoxin-Induced DNA Resection but Dispensable for Animal Development. Cells 2023; 12:2762. [PMID: 38067190 PMCID: PMC10706839 DOI: 10.3390/cells12232762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.
Collapse
Affiliation(s)
- Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Madeline Wong
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Lydia Tschoe
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Menolfi D, Lee BJ, Zhang H, Jiang W, Bowen NE, Wang Y, Zhao J, Holmes A, Gershik S, Rabadan R, Kim B, Zha S. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. Nat Commun 2023; 14:3618. [PMID: 37336885 DOI: 10.1038/s41467-023-39332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Antony Holmes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
| |
Collapse
|
4
|
Menolfi D, Lee BJ, Zhang H, Jiang W, Bowen NE, Wang Y, Zhao J, Holmes A, Gershik S, Rabadan R, Kim B, Zha S. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542515. [PMID: 37292881 PMCID: PMC10246007 DOI: 10.1101/2023.05.26.542515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.
Collapse
|
5
|
Wang S, Lee K, Gray S, Zhang Y, Tang C, Morrish R, Tosti E, van Oers J, Amin MR, Cohen P, MacCarthy T, Roa S, Scharff M, Edelmann W, Chahwan R. Role of EXO1 nuclease activity in genome maintenance, the immune response and tumor suppression in Exo1D173A mice. Nucleic Acids Res 2022; 50:8093-8106. [PMID: 35849338 PMCID: PMC9371890 DOI: 10.1093/nar/gkac616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
DNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here, we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1-/- and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1-/- mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1-/- mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1-/- mice was comparably defective, switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1-/- mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1-/- mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
- Current position: Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kyeryoung Lee
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, NY 14853, USA
- Current position: School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Rikke B Morrish
- Current position: School of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Johanna van Oers
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Mohammad Ruhul Amin
- Department of Computer and Information Science, Fordham University, Bronx, NY, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, NY 14853, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
6
|
Vincendeau E, Wei W, Zhang X, Planchais C, Yu W, Lenden-Hasse H, Cokelaer T, Pipoli da Fonseca J, Mouquet H, Adams DJ, Alt FW, Jackson SP, Balmus G, Lescale C, Deriano L. SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination. Nat Commun 2022; 13:3707. [PMID: 35764636 PMCID: PMC9240092 DOI: 10.1038/s41467-022-31287-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
SHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.
Collapse
Affiliation(s)
- Estelle Vincendeau
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Wenming Wei
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Xuefei Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Cyril Planchais
- Institut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology, 75015, Paris, France
| | - Wei Yu
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Hélène Lenden-Hasse
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques, 75015, Paris, France
- Institut Pasteur, Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, 75015, Paris, France
| | - Juliana Pipoli da Fonseca
- Institut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques, 75015, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology, 75015, Paris, France
| | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Chloé Lescale
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France.
| | - Ludovic Deriano
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France.
| |
Collapse
|
7
|
Oudinet C, Zhang X, Puget N, Kyritsis N, Leduc C, Braikia FZ, Dauba A, Alt FW, Khamlichi AA. Switch Tandem Repeats Influence the Choice of the Alternative End-Joining Pathway in Immunoglobulin Class Switch Recombination. Front Immunol 2022; 13:870933. [PMID: 35651614 PMCID: PMC9149575 DOI: 10.3389/fimmu.2022.870933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays an important role in humoral imm\une responses by changing the effector functions of antibodies. CSR occurs between highly repetitive switch (S) sequences located upstream of immunoglobulin constant gene exons. Switch sequences differ in size, the nature of their repeats, and the density of the motifs targeted by the activation-induced cytidine deaminase (AID), the enzyme that initiates CSR. CSR involves double-strand breaks (DSBs) at the universal Sµ donor region and one of the acceptor S regions. The DSBs ends are fused by the classical non-homologous end-joining (C-NHEJ) and the alternative-NHEJ (A-NHEJ) pathways. Of the two pathways, the A-NHEJ displays a bias towards longer junctional micro-homologies (MHs). The Sµ region displays features that distinguish it from other S regions, but the molecular basis of Sµ specificity is ill-understood. We used a mouse line in which the downstream Sγ3 region was put under the control of the Eµ enhancer, which regulates Sµ, and analyzed its recombination activity by CSR-HTGTS. Here, we show that provision of Eµ enhancer to Sγ3 is sufficient to confer the recombinational features of Sµ to Sγ3, including efficient AID recruitment, enhanced internal deletions and robust donor function in CSR. Moreover, junctions involving Sγ3 display a bias for longer MH irrespective of sequence homology with switch acceptor sites. The data suggest that the propensity for increased MH usage is an intrinsic property of Sγ3 sequence, and that the tandem repeats of the donor site influence the choice of the A-NHEJ.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Xuefei Zhang
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Department of Genetics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nadine Puget
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Department of Genetics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Claire Leduc
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Department of Genetics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
8
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
9
|
Sun X, Bai J, Xu J, Xi X, Gu M, Zhu C, Xue H, Chen C, Dong J. Multiple DSB Resection Activities Redundantly Promote Alternative End Joining-Mediated Class Switch Recombination. Front Cell Dev Biol 2021; 9:767624. [PMID: 34926456 PMCID: PMC8671047 DOI: 10.3389/fcell.2021.767624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023] Open
Abstract
Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.
Collapse
Affiliation(s)
- Xikui Sun
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jingning Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengming Zhu
- Research Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
10
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
11
|
Wang XS, Menolfi D, Wu-Baer F, Fangazio M, Meyer SN, Shao Z, Wang Y, Zhu Y, Lee BJ, Estes VM, Cupo OM, Gautier J, Pasqualucci L, Dalla-Favera R, Baer R, Zha S. DNA damage-induced phosphorylation of CtIP at a conserved ATM/ATR site T855 promotes lymphomagenesis in mice. Proc Natl Acad Sci U S A 2021; 118:e2105440118. [PMID: 34521752 PMCID: PMC8463888 DOI: 10.1073/pnas.2105440118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Marco Fangazio
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Jean Gautier
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032;
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
12
|
Milanovic M, Shao Z, Estes VM, Wang XS, Menolfi D, Lin X, Lee BJ, Xu J, Cupo OM, Wang D, Zha S. FATC Domain Deletion Compromises ATM Protein Stability, Blocks Lymphocyte Development, and Promotes Lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1228-1239. [PMID: 33536256 DOI: 10.4049/jimmunol.2000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm RX , corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm RX/RX mice compared with Atm -/- . Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
13
|
Milanovic M, Sprinzen L, Menolfi D, Lee JH, Yamamoto K, Li Y, Lee BJ, Xu J, Estes VM, Wang D, Mckinnon PJ, Paull TT, Zha S. The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Res 2021; 81:426-437. [PMID: 33239428 PMCID: PMC8137556 DOI: 10.1158/0008-5472.can-20-2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Lisa Sprinzen
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Demis Menolfi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Kenta Yamamoto
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Yang Li
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian J Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Verna M Estes
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York.
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|