1
|
M B B, Tiwari AK, N S M, Mohan M, C M L. Source apportionment of major ions and trace metals in the lacustrine systems of Schirmacher Hills, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174189. [PMID: 38936712 DOI: 10.1016/j.scitotenv.2024.174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet). The water quality index (WQI: 7.58-12.63) and pollution evaluation index (PEI: 1.36-2.35) remained normal, indicating that the water in these lake are of good quality. However, a significant correlation between lithogenic elements (Al, Fe) and potentially toxic elements (Cd, Cr, and Ba), suggests an increase in the anthropogenic impacts. Based on the principal component analysis (PCA), the source of trace metals to the lacustrine systems appears to be the surrounding environment, followed by aerosol dust particles. Hierarchical cluster analysis (HCA) revealed that regional topography significantly impacts the supply of major ions/trace metals to these lakes. The present study provides baseline data and can be used to estimate and forecast future local and/or global anthropogenic contaminations in the lacustrine system of Schirmacher Hills, East Antarctica. Moreover, the presence of research stations (Maitri and Novolazarevskaya), tourist activities, and the potential for anthropogenic stressors necessitate continued monitoring and impact assessment programs within the Schirmacher Hills lacustrine systems. These programs are crucial for safeguarding this pristine ecosystem from future environmental disturbances under a changing Antarctic climate, as mandated by the Antarctic Treaty System and the Indian Antarctic Act.
Collapse
Affiliation(s)
- Binish M B
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| | - A K Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | - Magesh N S
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India; Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laluraj C M
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
2
|
Sarathchandraprasad T, Tiwari M, Kumar V, Sherin S, Yadava MG. Glacial interglacial variations in the natural iron fertilization during the low sea ice periods along the eastern continental margin of Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176745. [PMID: 39383957 DOI: 10.1016/j.scitotenv.2024.176745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The Southern Ocean sequesters atmospheric CO2 through biological pumps, though its driving factors are debated. Modern productivity is regulated by natural iron fertilization from micronutrient influx through dust, regeneration, and Antarctic glaciers and sea ice melting (ice melt). The productivity along the eastern Antarctic continental margin was low during the last glacial period and gradually increased through the deglacial to Late Holocene, marked by distinct productivity peaks. The micronutrients also varied similarly, with reduced glacial influx and an increase in the Holocene, which may cause productivity peaks. Therefore, the coherence of enhanced productivity and micronutrient influx is considered as enhanced iron fertilization period. The productivity peaks declined within ∼1.5 kyr, mostly due to the Ekman transport and sea ice formation. Along with ice melt, the independent weathering pattern that responds with glacial- interglacial ice volume changes suggest the source of micronutrients is not terrigenous. Shelf interaction of oceanic currents can influence the water column nutrient stock significantly, while its utilization occurs during reduced ice periods (low sea ice and high glacier melting) for productivity. Therefore, enhanced natural iron fertilization periods are considered as ice low periods that occurred in a periodicity of 2 kyrs, at ∼7.5 kyr BP, ∼5.5 kyr BP, ∼4 kyr BP, ∼ 2.5 kyr BP, and ∼0.5 kyr BP, likely due to the combined effects of atmospheric and oceanographic factors driven by the high amplitude regional temperature variability during the mid to late Holocene.
Collapse
Affiliation(s)
- T Sarathchandraprasad
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India
| | - Manish Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India.
| | - Vikash Kumar
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India
| | - Sharmila Sherin
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India
| | - M G Yadava
- Geoscience Division, Physical Research Laboratory, Navrangapura, Ahmedabad 380009, India
| |
Collapse
|
3
|
Robel AA, Sim SJ, Meyer C, Siegfried MR, Gustafson CD. Contemporary ice sheet thinning drives subglacial groundwater exfiltration with potential feedbacks on glacier flow. SCIENCE ADVANCES 2023; 9:eadh3693. [PMID: 37595049 PMCID: PMC10438444 DOI: 10.1126/sciadv.adh3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Observations indicate that groundwater-laden sedimentary aquifers are extensive beneath large portions of the Greenland and Antarctic ice sheets. A reduction in the mechanical loading of aquifers is known to lead to groundwater exfiltration, a discharge of groundwater from the aquifer. Here, we provide a simple expression predicting exfiltration rates under a thinning ice sheet. Using contemporary satellite altimetry observations, we predict that exfiltration rates may reach tens to hundreds of millimeters per year under the fastest thinning parts of the Antarctic Ice Sheet. In parts of West Antarctica, predicted rates of exfiltration would cause the total subglacial water discharge rate to be nearly double what is currently predicted from subglacial basal melting alone. Continued Antarctic Ice Sheet thinning into the future guarantees that the rate and potential importance of exfiltration will only continue to grow. Such an increase in warm, nutrient-laden subglacial water discharge would cause changes in ice sliding, melt of basal ice and marine biological communities.
Collapse
Affiliation(s)
- Alexander A. Robel
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30318, USA
| | - Shi J. Sim
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30318, USA
| | - Colin Meyer
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Matthew R. Siegfried
- Hydrologic Science and Engineering Program, Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA
| | - Chloe D. Gustafson
- U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Lakewood, CO 80225, USA
| |
Collapse
|
4
|
Bruvold AS, Bienfait AM, Ervik TK, Loeschner K, Valdersnes S. Vertical distribution of inorganic nanoparticles in a Norwegian fjord. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105975. [PMID: 37086530 DOI: 10.1016/j.marenvres.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.
Collapse
Affiliation(s)
- Are S Bruvold
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; University of Bergen, Department of Chemistry, P.O. Box 7803, N-5020, Bergen, Norway.
| | | | - Torunn Kringlen Ervik
- Norwegian Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304, Oslo, Norway
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800, Kgs, Lyngby, Denmark
| | - Stig Valdersnes
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; University of Bergen, Department of Chemistry, P.O. Box 7803, N-5020, Bergen, Norway
| |
Collapse
|
5
|
Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles. Nat Commun 2022; 13:5428. [PMID: 36109505 PMCID: PMC9477832 DOI: 10.1038/s41467-022-33009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state. Piccione et al find evidence for Antarctic ice sheet instability driven by millennial cycles in Southern Ocean temperature, providing clues for the mechanisms that link climate change and rapid Antarctic ice loss events.
Collapse
|
6
|
Tsao A, Yousefzadeh SA, Meck WH, Moser MB, Moser EI. The neural bases for timing of durations. Nat Rev Neurosci 2022; 23:646-665. [PMID: 36097049 DOI: 10.1038/s41583-022-00623-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration 'estimation' are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.
Collapse
Affiliation(s)
- Albert Tsao
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
7
|
Abstract
Anthropogenic Pb is widespread in the environment including remote places. However, its presence in Canadian Arctic seawater is thought to be negligible based on low dissolved Pb (dPb) concentrations and proxy data. Here, we measured dPb isotopes in Arctic seawater with very low dPb concentrations (average ∼5 pmol ⋅ kg-1) and show that anthropogenic Pb is pervasive and often dominant in the western Arctic Ocean. Pb isotopes further reveal that historic aerosol Pb from Europe and Russia (Eurasia) deposited to the Arctic during the 20th century, and subsequently remobilized, is a significant source of dPb, particularly in water layers with relatively higher dPb concentrations (up to 16 pmol ⋅ kg-1). The 20th century Eurasian Pb is present predominantly in the upper 1,000 m near the shelf but is also detected in older deep water (2,000 to 2,500 m). These findings highlight the importance of the remobilization of anthropogenic Pb associated with previously deposited aerosols, especially those that were emitted during the peak of Pb emissions in the 20th century. This remobilization might be further enhanced because of accelerated melting of permafrost and ice along with increased coastal erosion in the Arctic. Additionally, the detection of 20th century Eurasian Pb in deep water helps constrain ventilation ages. Overall, this study shows that Pb isotopes in Arctic seawater are useful as a gauge of changing particulate and contaminant sources, such as those resulting from increased remobilization (e.g., coastal erosion) and potentially also those associated with increased human activities (e.g., mining and shipping).
Collapse
|