1
|
Koh JM, Tai T, Lee CH. Realization of higher-order topological lattices on a quantum computer. Nat Commun 2024; 15:5807. [PMID: 38987264 PMCID: PMC11237062 DOI: 10.1038/s41467-024-49648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Programmable quantum simulators may one day outperform classical computers at certain tasks. But at present, the range of viable applications with noisy intermediate-scale quantum (NISQ) devices remains limited by gate errors and the number of high-quality qubits. Here, we develop an approach that places digital NISQ hardware as a versatile platform for simulating multi-dimensional condensed matter systems. Our method encodes a high-dimensional lattice in terms of many-body interactions on a reduced-dimension model, thereby taking full advantage of the exponentially large Hilbert space of the host quantum system. With circuit optimization and error mitigation techniques, we measured on IBM superconducting quantum processors the topological state dynamics and protected mid-gap spectra of higher-order topological lattices, in up to four dimensions, with high accuracy. Our projected resource requirements scale favorably with system size and lattice dimensionality compared to classical computation, suggesting a possible route to useful quantum advantage in the longer term.
Collapse
Affiliation(s)
- Jin Ming Koh
- Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA, 91125, USA
- A*STAR Quantum Innovation Centre (Q.InC), Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Tommy Tai
- Department of Physics, MIT, Cambridge, MA, 02142, USA
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
| |
Collapse
|
2
|
Liu S. Anyon quantum dimensions from an arbitrary ground state wave function. Nat Commun 2024; 15:5134. [PMID: 38879566 PMCID: PMC11180095 DOI: 10.1038/s41467-024-47856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Realizing topological orders and topological quantum computation is a central task of modern physics. An important but notoriously hard question in this endeavor is how to diagnose topological orders that lack conventional order parameters. A breakthrough in this problem is the discovery of topological entanglement entropy, which can be used to detect nontrivial topological order from a ground state wave function, but is far from enough for fully determining the topological order. In this work, we take a key step further in this direction: We propose a simple entanglement-based protocol for extracting the quantum dimensions of all anyons from a single ground state wave function in two dimensions. The choice of the space manifold and the ground state is arbitrary. This protocol is both validated in the continuum and verified on lattices, and we anticipate it to be realizable in various quantum simulation platforms.
Collapse
Affiliation(s)
- Shang Liu
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
3
|
Zhang T, Cai Z. Quantum Slush State in Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2024; 132:206503. [PMID: 38829080 DOI: 10.1103/physrevlett.132.206503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
In this Letter, we propose an exotic quantum state that does not order at zero temperature in a Rydberg atom array with antiblockade mechanism. By performing an unbiased large-scale quantum Monte Carlo simulation, we investigate a minimal model with facilitated excitation in a disorder-free system. At zero temperature, this model exhibits a heterogeneous structure of liquid and glass mixture. This state, dubbed quantum slush state, features a quasi-long-range order with an algebraic decay for its correlation function, and is different from most well-established quantum phases of matter.
Collapse
Affiliation(s)
- Tengzhou Zhang
- Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control, Shanghai Research Center for Quantum Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi Cai
- Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control, Shanghai Research Center for Quantum Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Adelhardt P, Koziol JA, Langheld A, Schmidt KP. Monte Carlo Based Techniques for Quantum Magnets with Long-Range Interactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:401. [PMID: 38785650 PMCID: PMC11120707 DOI: 10.3390/e26050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum-optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations.
Collapse
Affiliation(s)
| | | | | | - Kai P. Schmidt
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; (P.A.); (J.A.K.); (A.L.)
| |
Collapse
|
5
|
Serwatka T, Roy PN. Quantum criticality in chains of planar rotors with dipolar interactions. J Chem Phys 2024; 160:104302. [PMID: 38465677 DOI: 10.1063/5.0195453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In this work, we perform a density matrix renormalization group study of chains of planar rotors interacting via dipolar interactions. By exploring the ground state from weakly to strongly interacting rotors, we find the occurrence of a quantum phase transition between a disordered and a dipole-ordered quantum state. We show that the nature of the ordered state changes from ferroelectric to antiferroelectric when the relative orientation of the rotor planes varies and that this change requires no modification of the overall symmetry. The observed quantum phase transitions are characterized by critical exponents and central charges, which reveal different universality classes ranging from that of the (1 + 1)D Ising model to the 2D classical XY model.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Zeybek Z, Mukherjee R, Schmelcher P. Quantum Phases from Competing Van der Waals and Dipole-Dipole Interactions of Rydberg Atoms. PHYSICAL REVIEW LETTERS 2023; 131:203003. [PMID: 38039461 DOI: 10.1103/physrevlett.131.203003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/02/2023] [Indexed: 12/03/2023]
Abstract
Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases. Their study is hard to realize with conventional quantum simulators. In this regard, Rydberg atoms provide an exception as their excited manifold of states have both density-density and exchange interactions whose strength and range can vary considerably. Focusing on one-dimensional systems, we leverage the Van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model. For the uniform chain, we can influence the boundaries between ordered phases and a Luttinger liquid phase. For the dimerized case, a new type of bond-order-density-wave phase is identified. This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
Collapse
Affiliation(s)
- Zeki Zeybek
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Rick Mukherjee
- Zentrum für Optische Quantentechnologien, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Peter Schmelcher
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Satoori S, Mahdavifar S, Vahedi J. Quantum correlations in the frustrated XY model on the honeycomb lattice. Sci Rep 2023; 13:16034. [PMID: 37749292 PMCID: PMC10520029 DOI: 10.1038/s41598-023-43080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
We have investigated the spin-1/2 XY frustrated antiferromagnetic Heisenberg honeycomb model, which features an intermediate region in its ground state phase diagram that is not well understood. The two dominant phases in the diagram are the quantum spin-liquid (QSL) and the antiferromagnetic Ising order. Quantum correlations suggest that the QSL phase is likely to exhibit entanglement. To explore this possibility, we utilized numerical Lanczos and density matrix renormalization group (DMRG) methods to calculate concurrence, quantum discord (QD), and entanglement entropy. The results of our study indicate the existence of quantum entanglement within the intermediate region, implying a greater probability for the dominance of the quantum spin-liquid (QSL) phase over the antiferromagnetic Ising order. This discovery underscores the importance of considering quantum correlations in comprehending the model's behavior and provides insight into the complex nature of quantum systems.
Collapse
Affiliation(s)
- Sahar Satoori
- Department of Physics, University of Guilan, Rasht, 45196-313, Iran
| | - Saeed Mahdavifar
- Department of Physics, University of Guilan, Rasht, 45196-313, Iran.
| | - Javad Vahedi
- School of Engineering and Science, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
- Department of Physics, Sari Branch, Islamic Azad University, 48161-19318, Sari, Iran
| |
Collapse
|
8
|
O'Rourke MJ, Chan GKL. Entanglement in the quantum phases of an unfrustrated Rydberg atom array. Nat Commun 2023; 14:5397. [PMID: 37669950 PMCID: PMC10480489 DOI: 10.1038/s41467-023-41166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Recent experimental advances have stimulated interest in the use of large, two-dimensional arrays of Rydberg atoms as a platform for quantum information processing and to study exotic many-body quantum states. However, the native long-range interactions between the atoms complicate experimental analysis and precise theoretical understanding of these systems. Here we use new tensor network algorithms capable of including all long-range interactions to study the ground state phase diagram of Rydberg atoms in a geometrically unfrustrated square lattice array. We find a greatly altered phase diagram from earlier numerical and experimental studies, revealed by studying the phases on the bulk lattice and their analogs in experiment-sized finite arrays. We further describe a previously unknown region with a nematic phase stabilized by short-range entanglement and an order from disorder mechanism. Broadly our results yield a conceptual guide for future experiments, while our techniques provide a blueprint for converging numerical studies in other lattices.
Collapse
Affiliation(s)
- Matthew J O'Rourke
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
9
|
Magoni M, Joshi R, Lesanovsky I. Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect. PHYSICAL REVIEW LETTERS 2023; 131:093002. [PMID: 37721842 DOI: 10.1103/physrevlett.131.093002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators. State-dependent operations are realized by exploiting electrostatic dipolar interactions that emerge, when two atoms are simultaneously excited to high-lying electronic states, so-called Rydberg states. These interactions also lead to state-dependent mechanical forces, which couple the electronic dynamics of the atoms to their vibrational motion. We explore these vibronic couplings within an artificial molecular system in which Rydberg states are excited under so-called facilitation conditions. This system, which is not necessarily self-bound, undergoes a structural transition between an equilateral triangle and an equal-weighted superposition of distorted triangular states (Jahn-Teller regime) exhibiting spin-phonon entanglement on a micrometer distance. This highlights the potential of Rydberg tweezer arrays for the study of molecular phenomena at exaggerated length scales.
Collapse
Affiliation(s)
- Matteo Magoni
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Radhika Joshi
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
10
|
Yan Z, Wang YC, Samajdar R, Sachdev S, Meng ZY. Emergent Glassy Behavior in a Kagome Rydberg Atom Array. PHYSICAL REVIEW LETTERS 2023; 130:206501. [PMID: 37267547 DOI: 10.1103/physrevlett.130.206501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 06/04/2023]
Abstract
We present large-scale quantum Monte Carlo simulation results on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays. Although the system has no intrinsic disorder, intriguingly, our analyses of static and dynamic properties on large system sizes reveal emergent glassy behavior in a region of parameter space located between two valence bond solid phases. The extent of this glassy region is demarcated using the Edwards-Anderson order parameter, and its phase transitions to the two proximate valence bond solids-as well as the crossover towards a trivial paramagnetic phase-are identified. We demonstrate the intrinsically slow (imaginary) time dynamics deep inside the glassy phase and discuss experimental considerations for detecting such a quantum disordered phase with numerous nearly degenerate local minima. Our proposal paves a new route to the study of real-time glassy phenomena and highlights the potential for quantum simulation of a distinct phase of quantum matter beyond solids and liquids in current-generation Rydberg platforms.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan-Cheng Wang
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
- Zhongfa Aviation Institute of Beihang University, Hangzhou 310023, China
| | - Rhine Samajdar
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zi Yang Meng
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
11
|
Yu XJ, Ding C, Xu L. Quantum criticality of a Z_{3}-symmetric spin chain with long-range interactions. Phys Rev E 2023; 107:054122. [PMID: 37329095 DOI: 10.1103/physreve.107.054122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/28/2023] [Indexed: 06/18/2023]
Abstract
Based on large-scale density matrix renormalization group techniques, we investigate the critical behaviors of quantum three-state Potts chains with long-range interactions. Using fidelity susceptibility as an indicator, we obtain a complete phase diagram of the system. The results show that as the long-range interaction power α increases, the critical points f_{c}^{*} shift towards lower values. In addition, the critical threshold α_{c}(≈1.43) of the long-range interaction power is obtained for the first time by a nonperturbative numerical method. This indicates that the critical behavior of the system can be naturally divided into two distinct universality classes, namely the long-range (α<α_{c}) and short-range (α>α_{c}) universality classes, qualitatively consistent with the classical ϕ^{3} effective field theory. This work provides a useful reference for further research on phase transitions in quantum spin chains with long-range interaction.
Collapse
Affiliation(s)
- Xue-Jia Yu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Chengxiang Ding
- School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| |
Collapse
|
12
|
Samajdar R, Joshi DG, Teng Y, Sachdev S. Emergent Z_{2} Gauge Theories and Topological Excitations in Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2023; 130:043601. [PMID: 36763444 DOI: 10.1103/physrevlett.130.043601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Strongly interacting arrays of Rydberg atoms provide versatile platforms for exploring exotic many-body phases and dynamics of correlated quantum systems. Motivated by recent experimental advances, we show that the combination of Rydberg interactions and appropriate lattice geometries naturally leads to emergent Z_{2} gauge theories endowed with matter fields. Based on this mapping, we describe how Rydberg platforms could realize two distinct classes of topological Z_{2} quantum spin liquids, which differ in their patterns of translational symmetry fractionalization. We also discuss the natures of the fractionalized excitations of these Z_{2} spin liquid states using both fermionic and bosonic parton theories and illustrate their rich interplay with proximate solid phases.
Collapse
Affiliation(s)
- Rhine Samajdar
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Princeton University, Princeton, New Jersey, 08544, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey, 08544, USA
| | - Darshan G Joshi
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yanting Teng
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
| |
Collapse
|
13
|
Serwatka T, Melko RG, Burkov A, Roy PN. Quantum Phase Transition in the One-Dimensional Water Chain. PHYSICAL REVIEW LETTERS 2023; 130:026201. [PMID: 36706406 DOI: 10.1103/physrevlett.130.026201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 06/18/2023]
Abstract
The concept of quantum phase transitions (QPTs) plays a central role in the description of condensed matter systems. In this Letter, we perform high-quality wave-function-based simulations to demonstrate the existence of a quantum phase transition in a crucially relevant molecular system, namely, water, forming linear chains of rotating molecules. We determine various critical exponents and reveal the water chain QPT to belong to the (1+1)-dimensional Ising universality class. Furthermore, the effect of breaking symmetries is examined, and it is shown that, by breaking the inversion symmetry, the ground state degeneracy of the ordered quantum phase is lifted to yield two many-body states with opposite polarization. The possibility of forming ferroelectric phases together with a thermal stability of the quantum critical regime up to ∼10 K makes the linear water chain a promising candidate as a platform for quantum devices.
Collapse
Affiliation(s)
- T Serwatka
- Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - R G Melko
- Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - A Burkov
- Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - P-N Roy
- Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
14
|
Tarabunga PS, Surace FM, Andreoni R, Angelone A, Dalmonte M. Gauge-Theoretic Origin of Rydberg Quantum Spin Liquids. PHYSICAL REVIEW LETTERS 2022; 129:195301. [PMID: 36399759 DOI: 10.1103/physrevlett.129.195301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent atomic physics experiments and numerical works have reported complementary signatures of the emergence of a topological quantum spin liquid in models with blockade interactions. However, the specific mechanism stabilizing such a phase remains unclear. Here, we introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices. This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory. By means of exact diagonalization and unbiased quantum Monte Carlo simulations, we show that the deconfined phases extend in a broad region of the parameter space; these states are characterized by a large ground state overlap with resonating valence bond wave functions. These blockaded models include both creation or annihilation and hopping dynamics, and can be experimentally realized with Rydberg-dressed atoms, offering novel and controllable platforms for the engineering and characterization of spin liquid states.
Collapse
Affiliation(s)
- P S Tarabunga
- The Abdus Salam International Centre for Theoretical Physics (ICTP), strada Costiera 11, 34151 Trieste, Italy
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
- INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - F M Surace
- Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| | - R Andreoni
- The Abdus Salam International Centre for Theoretical Physics (ICTP), strada Costiera 11, 34151 Trieste, Italy
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
- Dipartimento di Fisica "G. Occhialini," Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
| | - A Angelone
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| | - M Dalmonte
- The Abdus Salam International Centre for Theoretical Physics (ICTP), strada Costiera 11, 34151 Trieste, Italy
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
15
|
Koh JM, Tai T, Lee CH. Simulation of Interaction-Induced Chiral Topological Dynamics on a Digital Quantum Computer. PHYSICAL REVIEW LETTERS 2022; 129:140502. [PMID: 36240412 DOI: 10.1103/physrevlett.129.140502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Chiral edge states are highly sought after as paradigmatic topological states relevant to both quantum information processing and dissipationless electron transport. Using superconducting transmon-based quantum computers, we demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling. Also different from conventional 2D realizations, our effective Chern lattice is implemented on a much smaller equivalent 1D spin chain, with sequences of entangling gates encapsulating the required time-reversal breaking. By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum era quantum computers, paving the way for the quantum simulation of more sophisticated topological states on very rapidly developing quantum hardware.
Collapse
Affiliation(s)
- Jin Ming Koh
- Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, California 91125, USA
| | - Tommy Tai
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Physics, National University of Singapore, Singapore 117542
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
16
|
Yang S, Xu JB. Density-wave-ordered phases of Rydberg atoms on a honeycomb lattice. Phys Rev E 2022; 106:034121. [PMID: 36266797 DOI: 10.1103/physreve.106.034121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Rydberg atom arrays have recently emerged to be a promising platform for the exploration of exotic quantum phases of matter and quantum phenomena. In this work, we map out the ground-state phase diagram of Rydberg atoms on a honeycomb lattice as a function of the Rydberg blockade radius and the laser detuning by performing large-scale finite-size density matrix renormalization group simulations. Apart from a featureless disordered phase, we find five other intricate long-range density-wave-ordered phases within a relatively wide parameter space. The properties of these quantum phases are analyzed by calculating their Rydberg excitation profiles and static structure factors. In addition, a continuous quantum phase transition belonging to the (2+1)-dimensional Ising universality class is explored by a standard finite-size scaling analysis. Our work implies some different physics, such as the possible nontrivial quantum phase transitions and a highly degenerate string ordered phase, that a honeycomb geometry could bring to the Rydberg system and serves as a numerical guide for possible real experiments.
Collapse
Affiliation(s)
- Sheng Yang
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jing-Bo Xu
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Giudici G, Lukin MD, Pichler H. Dynamical Preparation of Quantum Spin Liquids in Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2022; 129:090401. [PMID: 36083676 DOI: 10.1103/physrevlett.129.090401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We theoretically analyze recent experiments [Semeghini et al., Science 374, 1242 (2021)SCIEAS0036-807510.1126/science.abi8794] demonstrating the onset of a topological spin liquid using a programmable quantum simulator based on Rydberg atom arrays. In the experiment, robust signatures of topological order emerge in out-of-equilibrium states that are prepared using a quasiadiabatic state preparation protocol. We show theoretically that the state preparation protocol can be optimized to target the fixed point of the topological phase-the resonating valence bond state of hard dimers-in a time that scales linearly with the number of atoms. Moreover, we provide a two-parameter variational manifold of tensor network states that accurately describe the many-body dynamics of the preparation process. Using this approach we analyze the nature of the nonequilibrium state, establishing the emergence of topological order.
Collapse
Affiliation(s)
- Giuliano Giudici
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany
- Arnold Sommerfeld Center for Theoretical Physics, University of Munich, Theresienstraße 37, 80333 München, Germany
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hannes Pichler
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| |
Collapse
|
18
|
Argüello-Luengo J, González-Tudela A, González-Cuadra D. Tuning Long-Range Fermion-Mediated Interactions in Cold-Atom Quantum Simulators. PHYSICAL REVIEW LETTERS 2022; 129:083401. [PMID: 36053702 DOI: 10.1103/physrevlett.129.083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior. Fermionic atoms in ultracold atomic mixtures can act as mediators, giving rise to long-range Ruderman-Kittel-Kasuya-Yosida-type interactions characterized by the dimensionality and density of the fermionic gas. Here, we propose several tuning knobs, accessible in current experimental platforms, that allow one to further control the range and shape of the mediated interactions, extending the existing quantum simulation toolbox. In particular, we include an additional optical lattice for the fermionic mediator, as well as anisotropic traps to change its dimensionality in a continuous manner. This allows us to interpolate between power-law and exponential decays, introducing an effective cutoff for the interaction range, as well as to tune the relative interaction strengths at different distances. Finally, we show how our approach allows one to investigate frustrated regimes that were not previously accessible, where symmetry-protected topological phases as well as chiral spin liquids emerge.
Collapse
Affiliation(s)
- Javier Argüello-Luengo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
| | | | - Daniel González-Cuadra
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Zheng Q, Hao CY, Zhou XF, Zhao YX, He JQ, He L. Tunable Sample-Wide Electronic Kagome Lattice in Low-Angle Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2022; 129:076803. [PMID: 36018691 DOI: 10.1103/physrevlett.129.076803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Overlaying two graphene layers with a small twist angle θ can create a moiré superlattice to realize exotic phenomena that are entirely absent in a graphene monolayer. A representative example is the predicted formation of localized pseudo-Landau levels (PLLs) with kagome lattice in tiny-angle twisted bilayer graphene (TBG) with θ<0.3° when the graphene layers are subjected to different electrostatic potentials. However, this was shown only for the model of rigidly rotated TBG, which is not realized in reality due to an interfacial structural reconstruction. It is believed that the interfacial structural reconstruction strongly inhibits the formation of the PLLs. Here, we systematically study electronic properties of the TBG with 0.075°≤θ<1.2° and demonstrate, unexpectedly, that the PLLs are quite robust for all the studied TBG. The structural reconstruction suppresses the formation of the emergent kagome lattice in the tiny-angle TBG. However, for the TBG around the magic angle, the sample-wide electronic kagome lattices with tunable lattice constants are directly imaged by using a scanning tunneling microscope. Our observations open a new direction to explore exotic correlated phases in moiré systems.
Collapse
Affiliation(s)
- Qi Zheng
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chen-Yue Hao
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiao-Feng Zhou
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ya-Xin Zhao
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jia-Qi He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
20
|
Baumketner A, Melnyk R. Kagome lattice made by impenetrable ellipses with attractive walls. SOFT MATTER 2022; 18:3801-3814. [PMID: 35522892 DOI: 10.1039/d2sm00479h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-dimensional structures, such as the kagome lattice, are experiencing renewed interest within the physics, chemistry and materials science communities in terms of both basic and applied research. Herein, we show that stable kagome lattices can be made by hard-core ellipses with attractive walls. We study a model in which hard-core ellipse is covered uniformly by an attractive square-well layer. Analytical calculations predict that for certain combinations of the asphericity aspect ratio and the attraction range, the kagome lattice is the ground-state conformation of this model. For one specific set of parameters computer simulations prove that the kagome lattice is the lowest free energy structure at low temperatures. At high temperatures, the conformational ensemble is dominated by liquid states. The temperature at which transition from the liquid to the kagome structure occurs has a maximum as a function of density, indicating that the underlying phase transformation is re-entrant. The maximum is attributed to the energy difference between the liquid and crystalline states. Our study reveals that the kagome lattice can be produced by means of very simple models. No specifically designed molecular shapes or interactions are required. Instead, very basic physical characteristics, such as asphericity and uniform attraction, are sufficient to induce spontaneous transition into this structure. In the context of the general understanding of the self-assembly processes, this finding is encouraging, giving one hope that the requirements for the assembly of other low-dimensional structures could be equally simple.
Collapse
Affiliation(s)
- A Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv, UA-79011, Ukraine.
| | - R Melnyk
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv, UA-79011, Ukraine.
| |
Collapse
|
21
|
Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of quantum algorithms to the study of many-particle quantum systems requires the ability to prepare wave functions that are relevant in the behavior of the system under study. Hamiltonian symmetries are important instruments used to classify relevant many-particle wave functions and to improve the efficiency of numerical simulations. In this work, quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers are presented. Two different strategies are discussed and compared: exact recursive construction of total spin eigenfunctions based on the addition theorem of angular momentum, and heuristic approximation of total spin eigenfunctions based on the variational optimization of a suitable cost function. The construction of these quantum circuits is illustrated in detail, and the preparation of total spin eigenfunctions is demonstrated on IBM quantum devices, focusing on three- and five-spin systems on graphs with triangle connectivity.
Collapse
|
22
|
Li CX, Yang S, Xu JB. Quantum phases of Rydberg atoms on a frustrated triangular-lattice array. OPTICS LETTERS 2022; 47:1093-1096. [PMID: 35230299 DOI: 10.1364/ol.450855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The neutral atoms coupled to a highly excited Rydberg state on a two-dimensional triangular lattice are investigated by employing the density matrix renormalization group technique in the matrix product state form. The full ground-state phase diagram as a function of blockade radius and the detuning of the exciting laser is determined by the behavior of entanglement entropy. We find several quantum phases including stripe-ordered and symmetry-breaking density-wave-ordered phases featured with regular excitation patterns of different excitation densities ρ = 1/3, 1/4, and 1/7. In addition, a ρ = 2/3 ordered phase and an interesting "order-by-disorder" phase, which has been prepared experimentally, are also observed in this work. Our work provides an exploration of the possible quantum phases that can occur in a triangularly arrayed Rydberg system, and thus could be a faithful theoretical guide for further experimental research.
Collapse
|
23
|
Myerson-Jain NE, Yan S, Weld D, Xu C. Construction of Fractal Order and Phase Transition with Rydberg Atoms. PHYSICAL REVIEW LETTERS 2022; 128:017601. [PMID: 35061455 DOI: 10.1103/physrevlett.128.017601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
We propose the construction of a many-body phase of matter with fractal structure using arrays of Rydberg atoms. The degenerate low energy excited states of this phase form a self-similar fractal structure. This phase is analogous to the so-called "type-II fracton topological states." The main challenge in realizing fractonlike models in standard condensed matter platforms is the creation of multispin interactions, since realistic systems are typically dominated by two-body interactions. In this work, we demonstrate that the van der Waals interaction and experimental tunability of Rydberg-based platforms enable the simulation of exotic phases of matter with fractal structures, and the study of a quantum phase transition involving a fractal ordered phase.
Collapse
Affiliation(s)
- Nayan E Myerson-Jain
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Stephen Yan
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - David Weld
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Cenke Xu
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
24
|
Semeghini G, Levine H, Keesling A, Ebadi S, Wang TT, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin MD. Probing topological spin liquids on a programmable quantum simulator. Science 2021; 374:1242-1247. [PMID: 34855494 DOI: 10.1126/science.abi8794] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- G Semeghini
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - H Levine
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - A Keesling
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,QuEra Computing, Boston, MA 02135, USA
| | - S Ebadi
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - T T Wang
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - D Bluvstein
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - R Verresen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - H Pichler
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - M Kalinowski
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - R Samajdar
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - A Omran
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,QuEra Computing, Boston, MA 02135, USA
| | - S Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
| | - A Vishwanath
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - M Greiner
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - V Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M D Lukin
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Wang YC, Cheng M, Witczak-Krempa W, Meng ZY. Fractionalized conductivity and emergent self-duality near topological phase transitions. Nat Commun 2021; 12:5347. [PMID: 34504099 PMCID: PMC8429463 DOI: 10.1038/s41467-021-25707-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a [Formula: see text] quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.
Collapse
Affiliation(s)
- Yan-Cheng Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China
| | - Meng Cheng
- Department of Physics, Yale University, New Haven, CT, USA
| | - William Witczak-Krempa
- Département de physique, Université de Montréal, Montréal, QC, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, QC, Canada
| | - Zi Yang Meng
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 2021; 595:227-232. [PMID: 34234334 DOI: 10.1038/s41586-021-03582-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022]
Abstract
Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing1, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide insights into strongly correlated quantum matter2-6, while at the same time enabling new methods for computation7-10 and metrology11. Here we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states12. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity antiferromagnetically ordered states and demonstrating quantum critical dynamics consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation14, experimentally map the phase diagram and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics and hardware-efficient realization of quantum algorithms.
Collapse
|
27
|
|