1
|
Secomandi S, Gallo GR, Rossi R, Rodríguez Fernandes C, Jarvis ED, Bonisoli-Alquati A, Gianfranceschi L, Formenti G. Pangenome graphs and their applications in biodiversity genomics. Nat Genet 2025; 57:13-26. [PMID: 39779953 DOI: 10.1038/s41588-024-02029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Complete datasets of genetic variants are key to biodiversity genomic studies. Long-read sequencing technologies allow the routine assembly of highly contiguous, haplotype-resolved reference genomes. However, even when complete, reference genomes from a single individual may bias downstream analyses and fail to adequately represent genetic diversity within a population or species. Pangenome graphs assembled from aligned collections of high-quality genomes can overcome representation bias by integrating sequence information from multiple genomes from the same population, species or genus into a single reference. Here, we review the available tools and data structures to build, visualize and manipulate pangenome graphs while providing practical examples and discussing their applications in biodiversity and conservation genomics across the tree of life.
Collapse
Affiliation(s)
- Simona Secomandi
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
| | | | - Riccardo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlos Rodríguez Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) and CHANGE, Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, New York, NY, USA
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, USA
| | | | | |
Collapse
|
2
|
Hooper DM, McDiarmid CS, Powers MJ, Justyn NM, Kučka M, Hart NS, Hill GE, Andolfatto P, Chan YF, Griffith SC. Spread of yellow-bill-color alleles favored by selection in the long-tailed finch hybrid system. Curr Biol 2024; 34:5444-5456.e8. [PMID: 39500321 DOI: 10.1016/j.cub.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Carotenoid pigments produce the yellow and red colors of birds and other vertebrates. Despite their importance in social signaling and sexual selection, our understanding of how carotenoid ornamentation evolves in nature remains limited. Here, we examine the long-tailed finch Poephila acuticauda, an Australian songbird with a yellow-billed western subspecies acuticauda and a red-billed eastern subspecies hecki, which hybridize where their ranges overlap. We found that yellow bills can be explained by the loss of C(4)-oxidation, thus preventing yellow dietary carotenoids from being converted to red. Combining linked-read genomic sequencing and reflectance spectrophotometry measurements of bill color collected from wild-sampled finches and laboratory crosses, we identify four loci that together explain 53% of variance in this trait. The two loci of largest effect contain the genes CYP2J19, an essential enzyme for producing red carotenoids, and TTC39B, an enhancer of carotenoid metabolism. A paucity of protein-coding changes and an enrichment of associated upstream variants suggest that the loss of C(4)-oxidation results from cis-regulatory evolution. Evolutionary genealogy reconstruction indicates that the red-billed phenotype is ancestral and that yellow alleles at CYP2J19 and TTC39B first arose and fixed in acuticauda approximately 100 kya. Yellow alleles subsequently introgressed into hecki less than 5 kya. Across all color loci, acuticauda-derived variants show evidence of selective sweeps, implying that yellow bill coloration has been favored by natural selection. Our study illustrates how evolutionary transitions between yellow and red coloration can be achieved by successive selective events acting on regulatory changes at a few interacting genes.
Collapse
Affiliation(s)
- Daniel M Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA; School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia.
| | - Callum S McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| | - Matthew J Powers
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | | | - Marek Kučka
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, the Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| |
Collapse
|
3
|
Ishigohoka J, Bascón-Cardozo K, Bours A, Fuß J, Rhie A, Mountcastle J, Haase B, Chow W, Collins J, Howe K, Uliano-Silva M, Fedrigo O, Jarvis ED, Pérez-Tris J, Illera JC, Liedvogel M. Distinct patterns of genetic variation at low-recombining genomic regions represent haplotype structure. Evolution 2024; 78:1916-1935. [PMID: 39208288 DOI: 10.1093/evolut/qpae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 09/24/2024] [Indexed: 09/04/2024]
Abstract
Genomic regions sometimes show patterns of genetic variation distinct from the genome-wide population structure. Such deviations have often been interpreted to represent effects of selection. However, systematic investigation of whether and how non-selective factors, such as recombination rates, can affect distinct patterns has been limited. Here, we associate distinct patterns of genetic variation with reduced recombination rates in a songbird, the Eurasian blackcap (Sylvia atricapilla), using a new reference genome assembly, whole-genome resequencing data and recombination maps. We find that distinct patterns of genetic variation reflect haplotype structure at genomic regions with different prevalence of reduced recombination rate across populations. At low-recombining regions shared in most populations, distinct patterns reflect conspicuous haplotypes segregating in multiple populations. At low-recombining regions found only in a few populations, distinct patterns represent variance among cryptic haplotypes within the low-recombining populations. With simulations, we confirm that these distinct patterns evolve neutrally by reduced recombination rate, on which the effects of selection can be overlaid. Our results highlight that distinct patterns of genetic variation can emerge through evolutionary reduction of local recombination rate. The recombination landscape as an evolvable trait therefore plays an important role determining the heterogeneous distribution of genetic variation along the genome.
Collapse
Affiliation(s)
- Jun Ishigohoka
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Andrea Bours
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Mountcastle
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bettina Haase
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | | | | | | | | | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA
| | - Javier Pérez-Tris
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), Oviedo University, Mieres, Spain
| | - Miriam Liedvogel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Avian Research, Wilhelmshaven, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Germany
| |
Collapse
|
4
|
Yusuf LH, Pascoal S, Moran PA, Bailey NW. Testing the genomic overlap between intraspecific mating traits and interspecific mating barriers. Evol Lett 2024; 8:902-915. [PMID: 39677567 PMCID: PMC11637687 DOI: 10.1093/evlett/qrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 12/17/2024] Open
Abstract
Differences in interspecific mating traits, such as male sexual signals and female preferences, often evolve quickly as initial barriers to gene flow between nascent lineages, and they may also strengthen such barriers during secondary contact via reinforcement. However, it is an open question whether loci contributing to intraspecific variation in sexual traits are co-opted during the formation and strengthening of mating barriers between species. To test this, we used a population genomics approach in natural populations of Australian cricket sister species that overlap in a contact zone: Teleogryllus oceanicus and Teleogryllus commodus. First, we identified loci associated with intraspecific variation in T. oceanicus mating signals: advertisement song and cuticular hydrocarbon (CHC) pheromones. We then separately identified candidate interspecific barrier loci between the species. Genes showing elevated allelic divergence between species were enriched for neurological functions, indicating potential behavioral rewiring. Only two CHC-associated genes overlapped with these interspecific candidate barrier loci, and intraspecific CHC loci showed signatures of being under strong selective constraints between species. In contrast, 10 intraspecific song-associated genes showed high genetic differentiation between T. commodus and T. oceanicus, and 2 had signals of high genomic divergence. The overall lack of shared loci in intra vs. interspecific comparisons of mating trait and candidate barrier loci is consistent with limited co-option of the genetic architecture of interspecific mating signals during the establishment and maintenance of reproductive isolation.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Sonia Pascoal
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
5
|
Burbrink FT, Myers EA. The genetic origins of species boundaries at subtropical and temperate ecoregions in the North American racers (Coluber constrictor). Heredity (Edinb) 2024:10.1038/s41437-024-00737-7. [PMID: 39609543 DOI: 10.1038/s41437-024-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Phylogeographically structured lineages are a common outcome of range-wide population genetic studies. In the southeastern United States, disconnection between populations found at the intersection of the southeastern coastal plains of peninsular Florida and the southeastern plains of the adjacent continent is readily apparent among many plants and animals. However, the timing and maintenance of species boundaries between these distinctly different subtropical and temperate regions remains unknown for all organisms studied there. Using genome-scale data, we examine the timing of origins, gene flow, and the movement of genes under selection in unique ecoregions within the North American racers (Coluber constrictor). Isolation-migration models along with tests of genome-wide selection, locus-environment associations, and spatial and genomic clines demonstrate that two unrecognized species are present and are in contact at the boundary of these two ecoregions. We show that selection at several loci associated with unique environments have maintained species boundaries despite constant levels of gene flow between these lineages over thousands of generations. This research provides a new avenue of research to examine speciation processes in poorly studied biodiversity hotspots.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, New York, NY, USA.
| | - Edward A Myers
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
6
|
Spurgin LG, Bosse M, Adriaensen F, Albayrak T, Barboutis C, Belda E, Bushuev A, Cecere JG, Charmantier A, Cichon M, Dingemanse NJ, Doligez B, Eeva T, Erikstad KE, Fedorov V, Griggio M, Heylen D, Hille S, Hinde CA, Ivankina E, Kempenaers B, Kerimov A, Krist M, Kvist L, Laine VN, Mänd R, Matthysen E, Nager R, Nikolov BP, Norte AC, Orell M, Ouyang J, Petrova-Dinkova G, Richner H, Rubolini D, Slagsvold T, Tilgar V, Török J, Tschirren B, Vágási CI, Yuta T, Groenen MAM, Visser ME, van Oers K, Sheldon BC, Slate J. The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird. Mol Ecol Resour 2024; 24:e13969. [PMID: 38747336 DOI: 10.1111/1755-0998.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.
Collapse
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Mirte Bosse
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Department of Ecological Science, Animal Ecology Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Adriaensen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tamer Albayrak
- Department of Biology, Science and art Faculty, Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, Turkey
- Biology Education, Buca Faculty of Education, Mathematics and Science Education, Dokuz Eylül University, İzmir, Turkey
| | | | - Eduardo Belda
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, València, Spain
| | - Andrey Bushuev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia, Italy
| | | | - Mariusz Cichon
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU München, Planegg-Martinsried, Germany
| | - Blandine Doligez
- UMR CNRS 5558-LBBE, Biométrie et Biologie Évolutive, Villeurbanne, France
- Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research, FRAM-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | | | - Matteo Griggio
- Department of Biology, University of Padova, Padova, Italy
| | - Dieter Heylen
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sabine Hille
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Science, Vienna, Austria
| | - Camilla A Hinde
- Behavioural Ecology Group, Department of Life Sciences, Anglia Ruskin University, Cambridgeshire, UK
| | - Elena Ivankina
- Faculty of Biology, Zvenigorod Biological Station, Lomonosov Moscow State University, Moscow, Russia
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Anvar Kerimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Milos Krist
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ruedi Nager
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Boris P Nikolov
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ana Claudia Norte
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Markku Orell
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Gergana Petrova-Dinkova
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Heinz Richner
- Evolutionary Ecology Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Milan, Italy
| | - Tore Slagsvold
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vallo Tilgar
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Teru Yuta
- Yamashina Institute for Ornithology, Abiko, Japan
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ben C Sheldon
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Loewen MA, Sertich JJW, Sampson S, O’Connor JK, Carpenter S, Sisson B, Øhlenschlæger A, Farke AA, Makovicky PJ, Longrich N, Evans DC. Lokiceratops rangiformis gen. et sp. nov. (Ceratopsidae: Centrosaurinae) from the Campanian Judith River Formation of Montana reveals rapid regional radiations and extreme endemism within centrosaurine dinosaurs. PeerJ 2024; 12:e17224. [PMID: 38912046 PMCID: PMC11193970 DOI: 10.7717/peerj.17224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
The Late Cretaceous of western North America supported diverse dinosaur assemblages, though understanding patterns of dinosaur diversity, evolution, and extinction has been historically limited by unequal geographic and temporal sampling. In particular, the existence and extent of faunal endemism along the eastern coastal plain of Laramidia continues to generate debate, and finer scale regional patterns remain elusive. Here, we report a new centrosaurine ceratopsid, Lokiceratops rangiformis, from the lower portion of the McClelland Ferry Member of the Judith River Formation in the Kennedy Coulee region along the Canada-USA border. Dinosaurs from the same small geographic region, and from nearby, stratigraphically equivalent horizons of the lower Oldman Formation in Canada, reveal unprecedented ceratopsid richness, with four sympatric centrosaurine taxa and one chasmosaurine taxon. Phylogenetic results show that Lokiceratops, together with Albertaceratops and Medusaceratops, was part of a clade restricted to a small portion of northern Laramidia approximately 78 million years ago. This group, Albertaceratopsini, was one of multiple centrosaurine clades to undergo geographically restricted radiations, with Nasutuceratopsini restricted to the south and Centrosaurini and Pachyrostra restricted to the north. High regional endemism in centrosaurs is associated with, and may have been driven by, high speciation rates and diversity, with competition between dinosaurs limiting their geographic range. High speciation rates may in turn have been driven in part by sexual selection or latitudinally uneven climatic and floral gradients. The high endemism seen in centrosaurines and other dinosaurs implies that dinosaur diversity is underestimated and contrasts with the large geographic ranges seen in most extant mammalian megafauna.
Collapse
Affiliation(s)
- Mark A. Loewen
- Natural History Museum of Utah, Salt Lake City, UT, United States of America
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States of America
- Evolutionsmuseet, Knuthenborg, Maribo, Denmark
| | - Joseph J. W. Sertich
- Evolutionsmuseet, Knuthenborg, Maribo, Denmark
- Smithsonian Tropical Research Institute, Panama City, Panamá
- Department of Geosciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott Sampson
- California Academy of Sciences, San Francisco, California, United States of America
| | | | - Savhannah Carpenter
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States of America
| | - Brock Sisson
- Independent Researcher, Pleasant Grove, Utah, United States of America
| | | | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology, Claremont, California, United States of America
| | - Peter J. Makovicky
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nick Longrich
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - David C. Evans
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolution, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
9
|
Burban E, Tenaillon MI, Glémin S. RIDGE, a tool tailored to detect gene flow barriers across species pairs. Mol Ecol Resour 2024; 24:e13944. [PMID: 38419376 DOI: 10.1111/1755-0998.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Characterizing the processes underlying reproductive isolation between diverging lineages is central to understanding speciation. Here, we present RIDGE-Reproductive Isolation Detection using Genomic polymorphisms-a tool tailored for quantifying gene flow barrier proportion and identifying the relevant genomic regions. RIDGE relies on an Approximate Bayesian Computation with a model-averaging approach to accommodate diverse scenarios of lineage divergence. It captures heterogeneity in effective migration rate along the genome while accounting for variation in linked selection and recombination. The barrier detection test relies on numerous summary statistics to compute a Bayes factor, offering a robust statistical framework that facilitates cross-species comparisons. Simulations revealed RIDGE's efficiency in capturing signals of ongoing migration. Model averaging proved particularly valuable in scenarios of high model uncertainty where no migration or migration homogeneity can be wrongly assumed, typically for recent divergence times <0.1 2Ne generations. Applying RIDGE to four published crow data sets, we first validated our tool by identifying a well-known large genomic region associated with mate choice patterns. Second, while we identified a significant overlap of outlier loci using RIDGE and traditional genomic scans, our results suggest that a substantial portion of previously identified outliers are likely false positives. Outlier detection relies on allele differentiation, relative measures of divergence and the count of shared polymorphisms and fixed differences. Our analyses also highlight the value of incorporating multiple summary statistics including our newly developed outlier ones that can be useful in challenging detection conditions.
Collapse
Affiliation(s)
- Ewen Burban
- University of Rennes, CNRS, ECOBIO-UMR 6553, Rennes, France
| | - Maud I Tenaillon
- University Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Sylvain Glémin
- University of Rennes, CNRS, ECOBIO-UMR 6553, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Sin SYW, Ke F, Chen G, Huang PY, Enbody ED, Karubian J, Webster MS, Edwards SV. Genetic Basis and Evolution of Structural Color Polymorphism in an Australian Songbird. Mol Biol Evol 2024; 41:msae046. [PMID: 38415852 PMCID: PMC10962638 DOI: 10.1093/molbev/msae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fushi Ke
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Guoling Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Pei-Yu Huang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Erik D Enbody
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael S Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Ferguson S, Jones A, Murray K, Andrew RL, Schwessinger B, Bothwell H, Borevitz J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. Gigascience 2024; 13:giae029. [PMID: 38869149 PMCID: PMC11170218 DOI: 10.1093/gigascience/giae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076 Germany
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Helen Bothwell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens 30602 GA, United States
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| |
Collapse
|
12
|
Hofmeister NR, Stuart KC, Warren WC, Werner SJ, Bateson M, Ball GF, Buchanan KL, Burt DW, Cardilini APA, Cassey P, De Meyer T, George J, Meddle SL, Rowland HM, Sherman CDH, Sherwin WB, Vanden Berghe W, Rollins LA, Clayton DF. Concurrent invasions of European starlings in Australia and North America reveal population-specific differentiation in shared genomic regions. Mol Ecol 2023. [PMID: 37933429 DOI: 10.1111/mec.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Katarina C Stuart
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wesley C Warren
- Department of Animal Sciences and Surgery, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Melissa Bateson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | | | - David W Burt
- Office of the Deputy Vice-Chancellor (Research and Innovation), The University of Queensland, Brisbane, Queensland, Australia
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Phillip Cassey
- Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, South Australia, Australia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Julia George
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Hannah M Rowland
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Craig D H Sherman
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - William B Sherwin
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University Antwerp, Antwerp, Belgium
| | - Lee Ann Rollins
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - David F Clayton
- Department of Genetics & Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
13
|
Mérot C, Stenløkk KSR, Venney C, Laporte M, Moser M, Normandeau E, Árnyasi M, Kent M, Rougeux C, Flynn JM, Lien S, Bernatchez L. Genome assembly, structural variants, and genetic differentiation between lake whitefish young species pairs (Coregonus sp.) with long and short reads. Mol Ecol 2023; 32:1458-1477. [PMID: 35416336 DOI: 10.1111/mec.16468] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
Nascent pairs of ecologically differentiated species offer an opportunity to get a better glimpse at the genetic architecture of speciation. Of particular interest is our recent ability to consider a wider range of genomic variants, not only single-nucleotide polymorphisms (SNPs), thanks to long-read sequencing technology. We can now identify structural variants (SVs) such as insertions, deletions and other rearrangements, allowing further insights into the genetic architecture of speciation and how different types of variants are involved in species differentiation. Here, we investigated genomic patterns of differentiation between sympatric species pairs (Dwarf and Normal) belonging to the lake whitefish (Coregonus clupeaformis) species complex. We assembled the first reference genomes for both C. clupeaformis sp. Normal and C. clupeaformis sp. Dwarf, annotated the transposable elements and analysed the genomes in the light of related coregonid species. Next, we used a combination of long- and short-read sequencing to characterize SVs and genotype them at the population scale using genome-graph approaches, showing that SVs cover five times more of the genome than SNPs. We then integrated both SNPs and SVs to investigate the genetic architecture of species differentiation in two different lakes and highlighted an excess of shared outliers of differentiation. In particular, a large fraction of SVs differentiating the two species correspond to insertions or deletions of transposable elements (TEs), suggesting that TE accumulation may represent a key component of genetic divergence between the Dwarf and Normal species. Together, our results suggest that SVs may play an important role in speciation and that, by combining second- and third-generation sequencing, we now have the ability to integrate SVs into speciation genomics.
Collapse
Affiliation(s)
- Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Kristina S R Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clare Venney
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Martin Laporte
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Ministère des Forêts, de la Faune et des Parcs (MFFP) du Québec, Québec, Québec, Canada
| | - Michel Moser
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clément Rougeux
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
14
|
Wersebe MJ, Sherman RE, Jeyasingh PD, Weider LJ. The roles of recombination and selection in shaping genomic divergence in an incipient ecological species complex. Mol Ecol 2023; 32:1478-1496. [PMID: 35119153 DOI: 10.1111/mec.16383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022]
Abstract
Speciation genomic studies have revealed that genomes of diverging lineages are shaped jointly by the actions of gene flow and selection. These evolutionary forces acting in concert with processes such as recombination and genome features such as gene density shape a mosaic landscape of divergence. We investigated the roles of recombination and gene density in shaping the patterns of differentiation and divergence between the cyclically parthenogenetic ecological sister-taxa, Daphnia pulicaria and Daphnia pulex. First, we assembled a phased chromosome-scale genome assembly using trio-binning for D. pulicaria and constructed a genetic map using an F2-intercross panel to understand sex-specific recombination rate heterogeneity. Finally, we used a ddRADseq data set with broad geographic sampling of D. pulicaria, D. pulex, and their hybrids to understand the patterns of genome-scale divergence and demographic parameters. Our study provides the first sex-specific estimates of recombination rates for a cyclical parthenogen, and unlike other eukaryotic species, we observed male-biased heterochiasmy in D. pulicaria, which may be related to this somewhat unique breeding mode. Additionally, regions of high gene density and recombination are generally more divergent than regions of suppressed recombination. Outlier analysis indicated that divergent genomic regions are probably driven by selection on D. pulicaria, the derived lineage colonizing a novel lake habitat. Together, our study supports a scenario of selection acting on genes related to local adaptation shaping genome-wide patterns of differentiation despite high local recombination rates in this species complex. Finally, we discuss the limitations of our data in light of demographic uncertainty.
Collapse
Affiliation(s)
- Matthew J Wersebe
- Department of Biology, Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Ryan E Sherman
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lawrence J Weider
- Department of Biology, Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
15
|
Nikelski E, Rubtsov AS, Irwin D. High heterogeneity in genomic differentiation between phenotypically divergent songbirds: a test of mitonuclear co-introgression. Heredity (Edinb) 2023; 130:1-13. [PMID: 36463372 PMCID: PMC9814147 DOI: 10.1038/s41437-022-00580-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Comparisons of genomic variation among closely related species often show more differentiation in mitochondrial DNA (mtDNA) and sex chromosomes than in autosomes, a pattern expected due to the differing effective population sizes and evolutionary dynamics of these genomic components. Yet, introgression can cause species pairs to deviate dramatically from general differentiation trends. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are hybridizing avian sister species that differ greatly in appearance and moderately in nuclear DNA, but that show no mtDNA differentiation. This discordance is best explained by adaptive mtDNA introgression-a process that can select for co-introgression at nuclear genes with mitochondrial functions (mitonuclear genes). To better understand these discordant differentiation patterns and characterize nuclear differentiation in this system, we investigated genome-wide differentiation between allopatric yellowhammers and pine buntings and compared it to what was seen previously in mtDNA. We found significant nuclear differentiation that was highly heterogeneous across the genome, with a particularly wide differentiation peak on the sex chromosome Z. We further investigated mitonuclear gene co-introgression between yellowhammers and pine buntings and found support for this process in the direction of pine buntings into yellowhammers. Genomic signals indicative of co-introgression were common in mitonuclear genes coding for subunits of the mitoribosome and electron transport chain complexes. Such introgression of mitochondrial DNA and mitonuclear genes provides a possible explanation for the patterns of high genomic heterogeneity in genomic differentiation seen among some species groups.
Collapse
Affiliation(s)
- Ellen Nikelski
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | - Darren Irwin
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Álvarez-González L, Arias-Sardá C, Montes-Espuña L, Marín-Gual L, Vara C, Lister NC, Cuartero Y, Garcia F, Deakin J, Renfree MB, Robinson TJ, Martí-Renom MA, Waters PD, Farré M, Ruiz-Herrera A. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. Cell Rep 2022; 41:111839. [PMID: 36543130 DOI: 10.1016/j.celrep.2022.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Laia Montes-Espuña
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Francisca Garcia
- Servei de Cultius Cel.lulars-SCAC, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Janine Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Marilyn B Renfree
- School of Biosciences, The University of Melbourne, Victoria, VIC 3010, Australia
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Marc A Martí-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
17
|
Campagna L, Mo Z, Siepel A, Uy JAC. Selective sweeps on different pigmentation genes mediate convergent evolution of island melanism in two incipient bird species. PLoS Genet 2022; 18:e1010474. [PMID: 36318577 PMCID: PMC9624418 DOI: 10.1371/journal.pgen.1010474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Insular organisms often evolve predictable phenotypes, like flightlessness, extreme body sizes, or increased melanin deposition. The evolutionary forces and molecular targets mediating these patterns remain mostly unknown. Here we study the Chestnut-bellied Monarch (Monarcha castaneiventris) from the Solomon Islands, a complex of closely related subspecies in the early stages of speciation. On the large island of Makira M. c. megarhynchus has a chestnut belly, whereas on the small satellite islands of Ugi, and Santa Ana and Santa Catalina (SA/SC) M. c. ugiensis is entirely iridescent blue-black (i.e., melanic). Melanism has likely evolved twice, as the Ugi and SA/SC populations were established independently. To investigate the genetic basis of melanism on each island we generated whole genome sequence data from all three populations. Non-synonymous mutations at the MC1R pigmentation gene are associated with melanism on SA/SC, while ASIP, an antagonistic ligand of MC1R, is associated with melanism on Ugi. Both genes show evidence of selective sweeps in traditional summary statistics and statistics derived from the ancestral recombination graph (ARG). Using the ARG in combination with machine learning, we inferred selection strength, timing of onset and allele frequency trajectories. MC1R shows evidence of a recent, strong, soft selective sweep. The region including ASIP shows more complex signatures; however, we find evidence for sweeps in mutations near ASIP, which are comparatively older than those on MC1R and have been under relatively strong selection. Overall, our study shows convergent melanism results from selective sweeps at independent molecular targets, evolving in taxa where coloration likely mediates reproductive isolation with the neighboring chestnut-bellied subspecies. Chestnut-bellied Monarchs (Monarcha castaneiventris ugiensis) from two archipelagos in the Solomon Islands have evolved entirely black plumage from a chestnut ancestor (Monarcha castaneiventris megarhynchus), a phenomenon known as island melanism. We obtain and analyze whole genome sequences using traditional summary statistics and new methods that combine inference of the ancestral recombination graph with machine learning. We find multiple lines of evidence for independent selective sweeps on the MC1R and ASIP genes, a receptor/ligand pair which regulates the production of melanin. Melanism on each archipelago is mediated by mutations in one of these two genes. Mutations in and around MC1R underwent a recent soft sweep experiencing strong selection on the islands of Santa Ana and Santa Catalina, whereas selection was also strong but comparatively older for ASIP on the island of Ugi. We show how melanism originated under positive selection on independent molecular targets, evolving convergently in taxa where coloration mediates reproductive isolation.
Collapse
Affiliation(s)
- Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, United States of America
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (LC); (JACU)
| | - Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - J. Albert C. Uy
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (LC); (JACU)
| |
Collapse
|
18
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Enbody ED, Sin SYW, Boersma J, Edwards SV, Ketaloya S, Schwabl H, Webster MS, Karubian J. The evolutionary history and mechanistic basis of female ornamentation in a tropical songbird. Evolution 2022; 76:1720-1736. [PMID: 35748580 PMCID: PMC9543242 DOI: 10.1111/evo.14545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/22/2023]
Abstract
Ornamentation, such as the showy plumage of birds, is widespread among female vertebrates, yet the evolutionary pressures shaping female ornamentation remain uncertain. In part this is due to a poor understanding of the mechanistic route to ornamentation in females. To address this issue, we evaluated the evolutionary history of ornament expression in a tropical passerine bird, the White-shouldered Fairywren, whose females, but not males, strongly vary between populations in occurrence of ornamented black-and-white plumage. We first use phylogenomic analysis to demonstrate that female ornamentation is derived and that female ornamentation evolves independently of changes in male plumage. We then use exogenous testosterone in a field experiment to induce partial ornamentation in naturally unornamented females. By sequencing the transcriptome of experimentally induced ornamented and natural feathers, we identify genes expressed during ornament production and evaluate the degree to which female ornamentation in this system is associated with elevated testosterone, as is common in males. We reveal that some ornamentation in females is linked to testosterone and that sexes differ in ornament-linked gene expression. Lastly, using genomic outlier analysis we identify a candidate melanogenesis gene that lies in a region of high genomic divergence among populations that is also differentially expressed in feather follicles of different female plumages. Taken together, these findings are consistent with sex-specific selection favoring the evolution of female ornaments and demonstrate a key role for testosterone in generating population divergence in female ornamentation through gene regulation. More broadly, our work highlights similarities and differences in how ornamentation evolves in the sexes.
Collapse
Affiliation(s)
- Erik D. Enbody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118,Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSE‐75123Sweden
| | - Simon Y. W. Sin
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138,School of Biological SciencesThe University of Hong KongPok Fu Lam RoadHong Kong
| | - Jordan Boersma
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164,Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138
| | - Serena Ketaloya
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| | - Hubert Schwabl
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164
| | - Michael S. Webster
- Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Jordan Karubian
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| |
Collapse
|
20
|
Ottenburghs J. Avian introgression patterns are consistent with Haldane's Rule. J Hered 2022; 113:363-370. [PMID: 35134952 PMCID: PMC9308041 DOI: 10.1093/jhered/esac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
According to Haldane’s Rule, the heterogametic sex will show the greatest fitness reduction in a hybrid cross. In birds, where sex is determined by a ZW system, female hybrids are expected to experience lower fitness compared to male hybrids. This pattern has indeed been observed in several bird groups, but it is unknown whether the generality of Haldane’s Rule also extends to the molecular level. First, given the lower fitness of female hybrids, we can expect maternally inherited loci (i.e., mitochondrial and W-linked loci) to show lower introgression rates than biparentally inherited loci (i.e., autosomal loci) in females. Second, the faster evolution of Z-linked loci compared to autosomal loci and the hemizygosity of the Z-chromosome in females might speed up the accumulation of incompatible alleles on this sex chromosome, resulting in lower introgression rates for Z-linked loci than for autosomal loci. I tested these expectations by conducting a literature review which focused on studies that directly quantified introgression rates for autosomal, sex-linked, and mitochondrial loci. Although most studies reported introgression rates in line with Haldane’s Rule, it remains important to validate these genetic patterns with estimates of hybrid fitness and supporting field observations to rule out alternative explanations. Genomic data provide exciting opportunities to obtain a more fine-grained picture of introgression rates across the genome, which can consequently be linked to ecological and behavioral observations, potentially leading to novel insights into the genetic mechanisms underpinning Haldane’s Rule.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and Conservation, Wageningen University & Research, Wageningen, The Netherlands.,Forest Ecology and Forest Management, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Izuno A, Onoda Y, Amada G, Kobayashi K, Mukai M, Isagi Y, Shimizu KK. Demography and selection analysis of the incipient adaptive radiation of a Hawaiian woody species. PLoS Genet 2022; 18:e1009987. [PMID: 35061669 PMCID: PMC8782371 DOI: 10.1371/journal.pgen.1009987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Ecological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments. The continuous M. polymorpha forest stands on the island of Hawaii were differentiated into three genetic clusters, each of which grows in a distinctive environment and includes substantial genetic and phenotypic diversity. The three genetic clusters showed signatures of selection in genomic regions encompassing genes relevant to environmental adaptations, including genes associated with light utilization, oxidative stress, and leaf senescence, which are likely associated with the ecological differentiation of the species. Our demographic modeling suggested that the glaberrima cluster in wet environments maintained a relatively large population size and two clusters split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological divergence possibly began before the species colonized the island of Hawaii. Interestingly, the three clusters recovered genetic connectivity coincidentally with a recent population bottleneck, in line with the weak reproductive isolation observed in the species. This study highlights that the degree of genetic differentiation between ecologically-diverged populations can vary depending on the strength of natural selection in the very early phases of speciation. Knowledge about how genetic barriers are formed between populations in distinct environments is valuable to understand the processes of speciation and conserve biodiversity. Metrosideros polymorpha, an endemic woody species in the Hawaiian Islands, is a good system to study developing genetic barriers in a species, because it colonized the diverse environments and diversified the morphology for a relatively short period of time. We analyzed the genomes of 70 M. polymorpha plants from a broad range of environments on the island of Hawaii to infer the current and past genetic barriers among them. Currently, M. polymorpha plants growing in different environments have substantially different genomes, especially at the genomic regions with genes putatively controlling physiology to fit in distinct environment. However, in its history, they had hybridized with one another, possibly because plants formerly growing in different environments came into close contact due to the climate changes. It is suggested that genetic barriers can easily strengthen or weaken depending on environments splitting the ecology of a species before reproductive isolation becomes complete.
Collapse
Affiliation(s)
- Ayako Izuno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Gaku Amada
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keito Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mana Mukai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
22
|
Kreiner JM, Sandler G, Stern AJ, Tranel PJ, Weigel D, Stinchcombe J, Wright SI. Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations. eLife 2022; 11:70242. [PMID: 35037853 PMCID: PMC8798060 DOI: 10.7554/elife.70242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/16/2022] [Indexed: 11/13/2022] Open
Abstract
Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 19 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size estimate of 8 x 107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show extreme parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. Two such forces are intra- and inter-locus allelic interactions; we report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, United States
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen Isaac Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Estalles C, Turbek SP, José Rodríguez-Cajarville M, Silveira LF, Wakamatsu K, Ito S, Lovette IJ, Tubaro PL, Lijtmaer DA, Campagna L. Concerted variation in melanogenesis genes underlies emergent patterning of plumage in capuchino seedeaters. Proc Biol Sci 2022; 289:20212277. [PMID: 35016545 PMCID: PMC8753160 DOI: 10.1098/rspb.2021.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns-which involve combinations of multiple colour patches across the body-can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype-phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.
Collapse
Affiliation(s)
- Cecilia Estalles
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Sheela P. Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | | | - Luís Fábio Silveira
- Seção de Aves, Museu de Zoologia, Universidade de São Paulo, Caixa Postal 42.494, CEP 04218-970 São Paulo, Brazil
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Irby J. Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Pablo L. Tubaro
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A. Lijtmaer
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Mueller JC, Botero-Delgadillo E, Espíndola-Hernández P, Gilsenan C, Ewels P, Gruselius J, Kempenaers B. Local selection signals in the genome of Blue tits emphasize regulatory and neuronal evolution. Mol Ecol 2022; 31:1504-1514. [PMID: 34995389 DOI: 10.1111/mec.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Understanding the genomic landscape of adaptation is central to the understanding of microevolution in wild populations. Genomic targets of selection and the underlying genomic mechanisms of adaptation can be elucidated by genome-wide scans for past selective sweeps or by scans for direct fitness associations. We sequenced and assembled 150 haplotypes of 75 Blue tits (Cyanistes caeruleus) of a single central-European population by a linked-read technology. We used these genome data in combination with coalescent simulations (1) to estimate an historical effective population size of ~250,000, which recently declined to ~10,000, and (2) to identify genome-wide distributed selective sweeps of beneficial variants most likely originating from standing genetic variation (soft sweeps). The genes linked to these soft sweeps, but also the ones linked to hard sweeps based on new beneficial mutants, showed a significant enrichment for functions associated with gene expression and transcription regulation. This emphasizes the importance of regulatory evolution in the population's adaptive history. Soft sweeps were further enriched for genes related to axon and synapse development, indicating the significance of neuronal connectivity changes in the brain potentially linked to behavioural adaptations. A previous scan of heterozygosity-fitness correlations revealed a consistent negative effect on arrival date at the breeding site for a single microsatellite in the MDGA2 gene. Here, we used the haplotype structure around this microsatellite to explain the effect as a local and direct outbreeding effect of a gene involved in synapse development.
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Esteban Botero-Delgadillo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Carol Gilsenan
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Phil Ewels
- Science for Life Laboratory (SciLifeLab), Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Joel Gruselius
- Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,current address: Vanadis Diagnostics, PerkinElmer, Sollentuna, Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
25
|
Hejase HA, Mo Z, Campagna L, Siepel A. A Deep-Learning Approach for Inference of Selective Sweeps from the Ancestral Recombination Graph. Mol Biol Evol 2022; 39:msab332. [PMID: 34888675 PMCID: PMC8789311 DOI: 10.1093/molbev/msab332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Detecting signals of selection from genomic data is a central problem in population genetics. Coupling the rich information in the ancestral recombination graph (ARG) with a powerful and scalable deep-learning framework, we developed a novel method to detect and quantify positive selection: Selection Inference using the Ancestral recombination graph (SIA). Built on a Long Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network (RNN), SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele frequency trajectory and time of selection onset. We benchmarked SIA extensively on simulations under a European human demographic model, and found that it performs as well or better as some of the best available methods, including state-of-the-art machine-learning and ARG-based methods. In addition, we used SIA to estimate selection coefficients at several loci associated with human phenotypes of interest. SIA detected novel signals of selection particular to the European (CEU) population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of selection at the LCT locus and several pigmentation-related genes. Finally, we reanalyzed polymorphism data of a collection of recently radiated southern capuchino seedeater taxa in the genus Sporophila to quantify the strength of selection and improved the power of our previous methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and thereby provides new insight into how selective sweeps shape genomic diversity.
Collapse
Affiliation(s)
- Hussein A Hejase
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
26
|
Wong ELY, Hiscock SJ, Filatov DA. The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in Senecio. FRONTIERS IN PLANT SCIENCE 2022; 13:907363. [PMID: 35812981 PMCID: PMC9260247 DOI: 10.3389/fpls.2022.907363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 05/08/2023]
Abstract
Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Edgar L. Y. Wong,
| | - Simon J. Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Botanic Garden and Arboretum, Oxford, United Kingdom
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Liang YY, Shi Y, Yuan S, Zhou BF, Chen XY, An QQ, Ingvarsson PK, Plomion C, Wang B. Linked selection shapes the landscape of genomic variation in three oak species. THE NEW PHYTOLOGIST 2022; 233:555-568. [PMID: 34637540 DOI: 10.1111/nph.17793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Natural selection shapes genome-wide patterns of diversity within species and divergence between species. However, quantifying the efficacy of selection and elucidating the relative importance of different types of selection in shaping genomic variation remain challenging. We sequenced whole genomes of 101 individuals of three closely related oak species to track the divergence history, and to dissect the impacts of selective sweeps and background selection on patterns of genomic variation. We estimated that the three species diverged around the late Neogene and experienced a bottleneck during the Pleistocene. We detected genomic regions with elevated relative differentiation ('FST -islands'). Population genetic inferences from the site frequency spectrum and ancestral recombination graph indicated that FST -islands were formed by selective sweeps. We also found extensive positive selection; the fixation of adaptive mutations and reduction neutral diversity around substitutions generated a signature of selective sweeps. Prevalent negative selection and background selection have reduced genetic diversity in both genic and intergenic regions, and contributed substantially to the baseline variation in genetic diversity. Our results demonstrate the importance of linked selection in shaping genomic variation, and illustrate how the extent and strength of different selection models vary across the genome.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
28
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
29
|
Turbek SP, Semenov GA, Enbody ED, Campagna L, Taylor SA. Variable Signatures of Selection Despite Conserved Recombination Landscapes Early in Speciation. J Hered 2021; 112:485-496. [PMID: 34499149 DOI: 10.1093/jhered/esab054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022] Open
Abstract
Recently diverged taxa often exhibit heterogeneous landscapes of genomic differentiation, characterized by regions of elevated differentiation on an otherwise homogeneous background. While divergence peaks are generally interpreted as regions responsible for reproductive isolation, they can also arise due to background selection, selective sweeps unrelated to speciation, and variation in recombination and mutation rates. To investigate the association between patterns of recombination and landscapes of genomic differentiation during the early stages of speciation, we generated fine-scale recombination maps for six southern capuchino seedeaters (Sporophila) and two subspecies of White Wagtail (Motacilla alba), two recent avian radiations in which divergent selection on pigmentation genes has likely generated peaks of differentiation. We compared these recombination maps to those of Collared (Ficedula albicollis) and Pied Flycatchers (Ficedula hypoleuca), non-sister taxa characterized by moderate genomic divergence and a heterogenous landscape of genomic differentiation shaped in part by background selection. Although recombination landscapes were conserved within all three systems, we documented a weaker negative correlation between recombination rate and genomic differentiation in the recent radiations. All divergence peaks between capuchinos, wagtails, and flycatchers were located in regions with lower-than-average recombination rates, and most divergence peaks in capuchinos and flycatchers fell in regions of exceptionally reduced recombination. Thus, co-adapted allelic combinations in these regions may have been protected early in divergence, facilitating rapid diversification. Despite largely conserved recombination landscapes, divergence peaks are specific to each focal comparison in capuchinos, suggesting that regions of elevated differentiation have not been generated by variation in recombination rate alone.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
30
|
Bisschop G, Lohse K, Setter D. Sweeps in time: leveraging the joint distribution of branch lengths. Genetics 2021; 219:iyab119. [PMID: 34849880 PMCID: PMC8633083 DOI: 10.1093/genetics/iyab119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/10/2021] [Indexed: 11/14/2022] Open
Abstract
Current methods of identifying positively selected regions in the genome are limited in two key ways: the underlying models cannot account for the timing of adaptive events and the comparison between models of selective sweeps and sequence data is generally made via simple summaries of genetic diversity. Here, we develop a tractable method of describing the effect of positive selection on the genealogical histories in the surrounding genome, explicitly modeling both the timing and context of an adaptive event. In addition, our framework allows us to go beyond analyzing polymorphism data via the site frequency spectrum or summaries thereof and instead leverage information contained in patterns of linked variants. Tests on both simulations and a human data example, as well as a comparison to SweepFinder2, show that even with very small sample sizes, our analytic framework has higher power to identify old selective sweeps and to correctly infer both the time and strength of selection. Finally, we derived the marginal distribution of genealogical branch lengths at a locus affected by selection acting at a linked site. This provides a much-needed link between our analytic understanding of the effects of sweeps on sequence variation and recent advances in simulation and heuristic inference procedures that allow researchers to examine the sequence of genealogical histories along the genome.
Collapse
Affiliation(s)
- Gertjan Bisschop
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Derek Setter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
31
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
32
|
Bourgeois YXC, Warren BH. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol Ecol 2021; 30:6036-6071. [PMID: 34009688 DOI: 10.1111/mec.15989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Characterizing the population history of a species and identifying loci underlying local adaptation is crucial in functional ecology, evolutionary biology, conservation and agronomy. The constant improvement of high-throughput sequencing techniques has facilitated the production of whole genome data in a wide range of species. Population genomics now provides tools to better integrate selection into a historical framework, and take into account selection when reconstructing demographic history. However, this improvement has come with a profusion of analytical tools that can confuse and discourage users. Such confusion limits the amount of information effectively retrieved from complex genomic data sets, and impairs the diffusion of the most recent analytical tools into fields such as conservation biology. It may also lead to redundancy among methods. To address these isssues, we propose an overview of more than 100 state-of-the-art methods that can deal with whole genome data. We summarize the strategies they use to infer demographic history and selection, and discuss some of their limitations. A website listing these methods is available at www.methodspopgen.com.
Collapse
Affiliation(s)
| | - Ben H Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP 51, Paris, France
| |
Collapse
|
33
|
Sheffer MM, Hoppe A, Krehenwinkel H, Uhl G, Kuss AW, Jensen L, Jensen C, Gillespie RG, Hoff KJ, Prost S. Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation. Gigascience 2021; 10:giaa148. [PMID: 33410470 PMCID: PMC7788392 DOI: 10.1093/gigascience/giaa148] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Argiope bruennichi, the European wasp spider, has been investigated intensively as a focal species for studies on sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies. FINDINGS We generated, de novo, a 1.67 Gb genome assembly of A. bruennichi using 21.8× Pacific Biosciences sequencing, polished with 19.8× Illumina paired-end sequencing data, and proximity ligation (Hi-C)-based scaffolding. This resulted in an N50 scaffold size of 124 Mb and an N50 contig size of 288 kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high-quality assembly. CONCLUSIONS We present the first chromosome-level genome assembly in the order Araneae. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation not only in A. bruennichi but also in arachnids overall, shedding light on questions such as the genomic architecture of traits, whole-genome duplication, and the genomic mechanisms behind silk and venom evolution.
Collapse
Affiliation(s)
- Monica M Sheffer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Anica Hoppe
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Henrik Krehenwinkel
- Department of Biogeography, University of Trier, Universitätsring 15, 54296 Trier, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Andreas W Kuss
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Lars Jensen
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Corinna Jensen
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Rosemary G Gillespie
- Department of Environmental Science Policy and Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- South African National Biodiversity Institute, National Zoological Gardens of South Africa, 232 Boom St., Pretoria 0001, South Africa
| |
Collapse
|