1
|
Stewart TA, Lemberg JB, Hillan EJ, Magallanes I, Daeschler EB, Shubin NH. The axial skeleton of Tiktaalik roseae. Proc Natl Acad Sci U S A 2024; 121:e2316106121. [PMID: 38564638 PMCID: PMC11009633 DOI: 10.1073/pnas.2316106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/30/2023] [Indexed: 04/04/2024] Open
Abstract
The axial columns of the earliest limbed vertebrates show distinct patterns of regionalization as compared to early tetrapodomorphs. Included among their novel features are sacral ribs, which provide linkage between the vertebral column and pelvis, contributing to body support and propulsion by the hindlimb. Data on the axial skeletons of the closest relatives of limbed vertebrates are sparce, with key features of specimens potentially covered by matrix. Therefore, it is unclear in what sequence and under what functional context specializations in the axial skeletons of tetrapods arose. Here, we describe the axial skeleton of the elpistostegalian Tiktaalik roseae and show that transformations to the axial column for head mobility, body support, and pelvic fin buttressing evolved in finned vertebrates prior to the origin of limbs. No atlas-axis complex is observed; however, an independent basioccipital-exoccipital complex suggests increased mobility at the occipital vertebral junction. While the construction of vertebrae in Tiktaalik is similar to early tetrapodomorphs, its ribs possess a specialized sacral domain. Sacral ribs are expanded and ventrally curved, indicating likely attachment to the expanded iliac blade of the pelvis by ligamentous connection. Thus, the origin of novel rib types preceded major alterations to trunk vertebrae, and linkage between pelvic fins and axial column preceded the origin of limbs. These data reveal an unexpected combination of post-cranial skeletal characters, informing hypotheses of body posture and movement in the closest relatives of limbed vertebrates.
Collapse
Affiliation(s)
- Thomas A. Stewart
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Justin B. Lemberg
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL60637
| | - Emily J. Hillan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL60637
| | - Isaac Magallanes
- Committee on Evolutionary Biology, The University of Chicago, Chicago, IL60637
| | - Edward B. Daeschler
- Department of Vertebrate Zoology, Academy of Natural Sciences of Drexel University, Philadelphia, PA19103
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL60637
- Committee on Evolutionary Biology, The University of Chicago, Chicago, IL60637
| |
Collapse
|
2
|
Young MW, Wilken AT, Manafzadeh AR, Schurr AF, Bastian A, Dickinson E, Granatosky MC. The dual function of prokinesis in the feeding and locomotor systems of parrots. J Exp Biol 2023; 226:jeb246659. [PMID: 37942661 PMCID: PMC10730085 DOI: 10.1242/jeb.246659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Prokinesis, a mode of avian cranial kinesis involving motion between the neurocranium and upper beak, has long been investigated in biomechanical analyses of avian feeding and drinking. However, the modern avian beak is also used for non-feeding functions. Here, we investigate the dual function of prokinesis in the feeding and locomotor systems of the rosy-faced lovebird (Agapornis roseicollis). Lovebirds and other parrots utilize their beak both during feeding and as a third limb during vertical climbing. Thus, we experimentally measured both force-generating potential and movement of the rosy-faced lovebird mandible and maxilla (via prokinetic flexion of the craniofacial hinge) during tripedal climbing and mandibular/maxillary adduction. We found that whereas the maxilla is primarily responsible for generating force during locomotion, the mandible is primarily responsible for generating force during forceful jaw adduction, hinting at a remarkable capacity to alter prokinetic function with differing neuromuscular control. The ability of the prokinetic apparatus to perform functions with competing optimality criteria via modulation of motor control illustrates the functional plasticity of the avian cranial kinesis and sheds new light on the adaptive significance of cranial mobility.
Collapse
Affiliation(s)
- Melody W. Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Alec T. Wilken
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Armita R. Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06520, USA
- Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, New Haven, CT 06520, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Alissa F. Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Aaron Bastian
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Michael C. Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Schwarz D, Heiss E, Pierson TW, Konow N, Schoch RR. Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220541. [PMID: 37839447 PMCID: PMC10577038 DOI: 10.1098/rstb.2022.0541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/23/2023] [Indexed: 10/17/2023] Open
Abstract
The vertebrate water-to-land transition and the rise of tetrapods brought about fundamental changes for the groups undergoing these evolutionary changes (i.e. stem and early tetrapods). These groups were forced to adapt to new conditions, including the distinct physical properties of water and air, requiring fundamental changes in anatomy. Nutrition (or feeding) was one of the prime physiological processes these vertebrates had to successfully adjust to change from aquatic to terrestrial life. The basal gnathostome feeding mode involves either jaw prehension or using water flows to aid in ingestion, transportation and food orientation. Meanwhile, processing was limited primarily to simple chewing bites. However, given their comparatively massive and relatively inflexible hyobranchial system (compared to the more muscular tongue of many tetrapods), it remains fraught with speculation how stem and early tetrapods managed to feed in both media. Here, we explore ontogenetic water-to-land transitions of salamanders as functional analogues to model potential changes in the feeding behaviour of stem and early tetrapods. Our data suggest two scenarios for terrestrial feeding in stem and early tetrapods as well as the presence of complex chewing behaviours, including excursions of the jaw in more than one dimension during early developmental stages. Our results demonstrate that terrestrial feeding may have been possible before flexible tongues evolved. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Palaeontology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Todd W. Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854, USA
| | - Rainer R. Schoch
- Department of Palaeontology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Institute for Biology, Department of Palaeontology, University of Hohenheim, Wollgrasweg 23, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Brownstein CD. Palaeospondylus and the early evolution of gnathostomes. Nature 2023; 620:E20-E22. [PMID: 37612401 DOI: 10.1038/s41586-023-06434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Chase Doran Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Stamford Museum and Nature Center, Stamford, CT, USA.
| |
Collapse
|
5
|
Abstract
Joints enable nearly all vertebrate animal motion, from feeding to locomotion. However, despite well over a century of arthrological research, we still understand very little about how the structure of joints relates to the kinematics they exhibit in life. This Commentary discusses the value of joint mobility as a lens through which to study articular form and function. By independently exploring form-mobility and mobility-function relationships and integrating the insights gained, we can develop a deep understanding of the strength and causality of articular form-function relationships. In turn, we will better illuminate the basics of 'how joints work' and be well positioned to tackle comparative investigations of the diverse repertoire of vertebrate animal motion.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06520, USA.,Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA.,Yale Peabody Museum of Natural History, 170 Whitney Avenue, New Haven, CT 06520, USA.,Department of Mechanical Engineering and Materials Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06520-8292, USA
| |
Collapse
|
6
|
Rawson JRG, Esteve-Altava B, Porro LB, Dutel H, Rayfield EJ. Early tetrapod cranial evolution is characterized by increased complexity, constraint, and an offset from fin-limb evolution. SCIENCE ADVANCES 2022; 8:eadc8875. [PMID: 36083907 PMCID: PMC9462696 DOI: 10.1126/sciadv.adc8875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The developmental underpinnings and functional consequences of modifications to the limbs during the origin of the tetrapod body plan are increasingly well characterized, but less is understood about the evolution of the tetrapod skull. Decrease in skull bone number has been hypothesized to promote morphological and functional diversification in vertebrate clades, but its impact during the initial rise of tetrapods is unknown. Here, we test this by quantifying topological changes to cranial anatomy in fossil and living taxa bracketing the fin-to-limb transition using anatomical network analysis. We find that bone loss across the origin of tetrapods is associated not only with increased complexity of bone-to-bone contacts but also with decreasing topological diversity throughout the late Paleozoic, which may be related to developmental and/or mechanical constraints. We also uncover a 10-Ma offset between fin-limb and cranial morphological evolution, suggesting that different evolutionary drivers affected these features during the origin of tetrapods.
Collapse
Affiliation(s)
| | - Borja Esteve-Altava
- Institut de Biologia Evolutiva, Departament de Ciències Experimentals i la Salud, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura B. Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
7
|
Gartner SM, Whitlow KR, Laurence-Chasen JD, Kaczmarek EB, Granatosky MC, Ross CF, Westneat MW. Suction feeding of West African lungfish (Protopterus annectens): An XROMM analysis of jaw mechanics, cranial kinesis, and hyoid mobility. Biol Open 2022; 11:276553. [PMID: 36066131 PMCID: PMC9493713 DOI: 10.1242/bio.059447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Suction feeding in fishes is characterized by rapid cranial movements, but extant lungfishes (Sarcopterygii: Dipnoi) exhibit a reduced number and mobility of cranial bones relative to actinopterygian fishes. Despite fusion of cranial elements, lungfishes are proficient at suction feeding, though the impacts of novel cranial morphology and reduced cranial kinesis on feeding remain poorly understood. We used X-ray Reconstruction of Moving Morphology (XROMM) to study the kinematics of seven mobile skeletal elements (neurocranium, upper jaw, lower jaw, tongue, ceratohyal, clavicle, and cranial rib) and two muscles (costoclavicular portion of the hypaxialis and rectus cervicis) during the feeding strikes of West African lungfish (Protopterus annectens). We found that feeding by P. annectens on non-evasive prey is relatively slow, with a mean time to peak gape of 273 ms. Lower jaw depression and clavicular rotation were hinge-like, with one degree of freedom, but the ceratohyals rotated in a complex motion involving depression and long-axis rotation. We quantified the relative contributions to oral cavity volume change (RCVC) and found that oral cavity expansion is created primarily by ceratohyal and clavicle motion. P. annectens suction feeds relatively slowly but successfully through muscle shortening of hypaxial and rectus cervicis muscles contributing to hyoid mobility.
Collapse
Affiliation(s)
- Samantha M Gartner
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Katrina R Whitlow
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Elska B Kaczmarek
- Department of Ecology, Evolution, and Organismal Biology, Brown University, 80 Waterman St., Providence RI 02912, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, 100 Northern Blvd, Old Westbury, NY 11568, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| |
Collapse
|
8
|
A new elpistostegalian from the Late Devonian of the Canadian Arctic. Nature 2022; 608:563-568. [PMID: 35859171 PMCID: PMC9385497 DOI: 10.1038/s41586-022-04990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/17/2022] [Indexed: 12/03/2022]
Abstract
A fundamental gap in the study of the origin of limbed vertebrates lies in understanding the morphological and functional diversity of their closest relatives. Whereas analyses of the elpistostegalians Panderichthys rhombolepis, Tiktaalik roseae and Elpistostege watsoni have revealed a sequence of changes in locomotor, feeding and respiratory structures during the transition1–9, an isolated bone, a putative humerus, has controversially hinted at a wider range in form and function than now recognized10–14. Here we report the discovery of a new elpistostegalian from the Late Devonian period of the Canadian Arctic that shows surprising disparity in the group. The specimen includes partial upper and lower jaws, pharyngeal elements, a pectoral fin and scalation. This new genus is phylogenetically proximate to T. roseae and E. watsoni but evinces notable differences from both taxa and, indeed, other described tetrapodomorphs. Lacking processes, joint orientations and muscle scars indicative of appendage-based support on a hard substrate13, its pectoral fin shows specializations for swimming that are unlike those known from other sarcopterygians. This unexpected morphological and functional diversity represents a previously hidden ecological expansion, a secondary return to open water, near the origin of limbed vertebrates. A new elpistostegalian from the Late Devonian period has been discovered that shows disparity in the group and represents a previously hidden ecological expansion, a secondary return to open water, near the origin of limbed vertebrates.
Collapse
|
9
|
Argyriou T, Giles S, Friedman M. A Permian fish reveals widespread distribution of neopterygian-like jaw suspension. eLife 2022; 11:58433. [PMID: 35579418 PMCID: PMC9345605 DOI: 10.7554/elife.58433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
The actinopterygian crown group (comprising all living ray-finned fishes) originated by the end of the Carboniferous. However, most late Paleozoic taxa are stem actinopterygians, and broadly resemble stratigraphically older taxa. The early Permian †Brachydegma caelatum is notable for its three-dimensional preservation and past phylogenetic interpretations as a nested member of the neopterygian crown. Here, we use computed microtomography to redescribe †Brachydegma, uncovering an unanticipated combination of primitive (e.g., aortic canal; immobile maxilla) and derived (e.g., differentiated occipital ossifications; posterior stem of parasphenoid; two accessory hyoidean ossifications; double jaw joint) dermal and endoskeletal features relative to most other Paleozoic actinopterygians. Some of these features were previously thought to be restricted to the neopterygian crown. The precise phylogenetic position of †Brachydegma is unclear, with placements either on the polypterid stem, or as an early-diverging stem neopterygian. However, our analyses decisively reject previous placements of †Brachydegma in the neopterygian crown. Critically, we demonstrate that key-endoskeletal components of the hyoid portion of the suspensorium of crown neopterygians appeared deeper in the tree than previously thought.
Collapse
Affiliation(s)
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matt Friedman
- Museum of Paleontology, Department of Earth and Environmental Sciences, University of Michigan-Ann Arbor, Ann Arbor, United States
| |
Collapse
|
10
|
MacIver MA, Finlay BL. The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200523. [PMID: 34957852 PMCID: PMC8710882 DOI: 10.1098/rstb.2020.0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal's body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Malcolm A. MacIver
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL 60208, USA
| | - Barbara L. Finlay
- Department of Psychology, Behavioral and Evolutionary Neuroscience Group, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Whitlow KR, Ross CF, Gidmark NJ, Laurence-Chasen JD, Westneat MW. Suction feeding biomechanics of Polypterus bichir: investigating linkage mechanisms and the contributions of cranial kinesis to oral cavity volume change. J Exp Biol 2022; 225:273979. [PMID: 35019979 DOI: 10.1242/jeb.243283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Many fishes use substantial cranial kinesis to rapidly increase buccal cavity volume, pulling prey into the mouth via suction feeding. Living polypterids are a key lineage for understanding the evolution and biomechanics of suction feeding due to their phylogenetic position and unique morphology. Polypterus bichir have fewer mobile cranial elements compared to teleosts (e.g., immobile [pre]maxillae) but successfully generate suction through dorsal, ventral, and lateral oral cavity expansion. However, the relative contributions of these motions to suction feeding success have not been quantified. Additionally, extensive body musculature and lack of opercular jaw opening linkages make P. bichir of interest for examining the role of cranial vs. axial muscles in driving mandibular depression. Here we analyze the kinematics of buccal expansion during suction feeding in P. bichir using X-Ray Reconstruction of Moving Morphology (XROMM) and quantify the contributions of skeletal elements to oral cavity volume expansion and prey capture. Mouth gape peaks early in the strike, followed by maximum cleithral and ceratohyal rotations, and finally by opercular and suspensorial abductions, maintaining the anterior-to-posterior movement of water. Using a new method of quantifying bones' relative contributions to volume change (RCVC) we demonstrate that ceratohyal kinematics are the most significant drivers of oral cavity volume change. All measured cranial bone motions, except abduction of the suspensorium, are correlated with prey motion. Lastly, cleithral retraction is largely concurrent with ceratohyal retraction and jaw depression while the sternohyoideus maintains constant length, suggesting a central role of the axial muscles, cleithrum, and ceratohyal in ventral expansion.
Collapse
Affiliation(s)
- Katrina R Whitlow
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | | | - J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Staab KL. Implementing Fabrication as a Pedagogical Tool in Vertebrate Anatomy Courses: Motivation, Inclusion, and Lessons. Integr Comp Biol 2021; 61:1013-1027. [PMID: 34173664 PMCID: PMC8490688 DOI: 10.1093/icb/icab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing course structure by incorporating active learning and multimodal pedagogical strategies benefits all learners. Students of vertebrate anatomy can especially benefit from practicing fabrication, or "making", incorporating skills such as 3D digital modeling, 3D printing, and using familiar low-tech materials to construct informed replicas of animal anatomy. Student perceptions of active learning projects are shaped by motivation theories such as the expectancy-value theory and self-directed learning, both of which are briefly reviewed here. This paper offers inspiration and resources to instructors for establishing a makerspace in an anatomy lab and leveraging community partners to stimulate students to construct their own versions of nature's designs. Learning science in informal environments and specifically in makerspaces has been shown to promote equity and increase motivation to study science. Examples here emphasize accessibility for diverse learners, including strategies for instructors to ensure ease of student access to 3D technology. Scaffolding formative assessments builds student confidence and expertise, further closing opportunity gaps. Two specific cases are detailed where fabrication and the use of 3D digital models are used to augment student learning of vertebrate anatomy at a small liberal arts college. In a semester-long research project in an introductory biomechanics course, students investigate, write about, and build models of animal anatomy of their choice. They use simple materials, crafting supplies, household tools, and/or 3D printing to demonstrate structures of interest, enhancing understanding of the physical principles of animal form and function. Given increased availability of CT data online, students can download, analyze, and 3D print skeletal models of both common and endangered animals. Comparative anatomy students reported that they had increased motivation to study intricate skeletal anatomy simply by manipulating bones in a 3D software assignment. Students in both classes reported enjoying the use of fabrication in learning vertebrate anatomy and this may establish a pattern of lifelong learning.
Collapse
Affiliation(s)
- Katie Lynn Staab
- Biology Department, McDaniel College, Westminster, MD 21157, USA
| |
Collapse
|
13
|
Turko AJ, Rossi GS, Wright PA. More than Breathing Air: Evolutionary Drivers and Physiological Implications of an Amphibious Lifestyle in Fishes. Physiology (Bethesda) 2021; 36:307-314. [PMID: 34431416 DOI: 10.1152/physiol.00012.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Simões TR, Pierce SE. Sustained high rates of morphological evolution during the rise of tetrapods. Nat Ecol Evol 2021; 5:1403-1414. [PMID: 34426679 DOI: 10.1038/s41559-021-01532-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022]
Abstract
The fish-to-tetrapod transition is one of the most iconic events in vertebrate evolution, yet fundamental questions regarding the dynamics of this transition remain unresolved. Here, we use advances in Bayesian morphological clock modelling to reveal the evolutionary dynamics of early tetrapodomorphs (tetrapods and their closest fish relatives). We show that combining osteological and ichnological calibration data results in major shifts on the time of origin of all major groups of tetrapodomorphs (up to 25 million years) and that low rates of net diversification, not fossilization, explain long ghost lineages in the early tetrapodomorph fossil record. Further, our findings reveal extremely low rates of morphological change for most early tetrapodomorphs, indicating widespread stabilizing selection upon their 'fish' morphotype. This pattern was broken only by elpistostegalians (including early tetrapods), which underwent sustained high rates of morphological evolution for ~30 Myr during the deployment of the tetrapod body plan.
Collapse
Affiliation(s)
- Tiago R Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Stephanie E Pierce
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting. Proc Natl Acad Sci U S A 2021; 118:2016421118. [PMID: 33526593 PMCID: PMC7896305 DOI: 10.1073/pnas.2016421118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The water-to-land transition is a major event in vertebrate history, involving significant changes to feeding structures and mechanics. In water, fish often use suction-feeding to capture prey, but this feeding strategy is not possible on land. Therefore, it has been traditionally believed that the invasion of land involved a shift from suction-based prey capture to mechanisms based on biting and snapping. Computed tomography analysis of Tiktaalik roseae, a key intermediate in tetrapod evolution, compared with extant analogs (gars and polypterids), reveals a rigid skull, capable of biting, with joint morphologies suggestive of cranial kinesis and suction generation. An intermediate condition that utilizes both feeding strategies helps explain some of the key morphological changes in cranial anatomy during the water-to-land transition. Changes to feeding structures are a fundamental component of the vertebrate transition from water to land. Classically, this event has been characterized as a shift from an aquatic, suction-based mode of prey capture involving cranial kinesis to a biting-based feeding system utilizing a rigid skull capable of capturing prey on land. Here we show that a key intermediate, Tiktaalik roseae, was capable of cranial kinesis despite significant restructuring of the skull to facilitate biting and snapping. Lateral sliding joints between the cheek and dermal skull roof, as well as independent mobility between the hyomandibula and palatoquadrate, enable the suspensorium of T. roseae to expand laterally in a manner similar to modern alligator gars and polypterids. This movement can expand the spiracular and opercular cavities during feeding and respiration, which would direct fluid through the feeding apparatus. Detailed analysis of the sutural morphology of T. roseae suggests that the ability to laterally expand the cheek and palate was maintained during the fish-to-tetrapod transition, implying that limited cranial kinesis was plesiomorphic to the earliest limbed vertebrates. Furthermore, recent kinematic studies of feeding in gars demonstrate that prey capture with lateral snapping can synergistically combine both biting and suction, rather than trading off one for the other. A “gar-like” stage in early tetrapod evolution might have been an important intermediate step in the evolution of terrestrial feeding systems by maintaining suction-generation capabilities while simultaneously elaborating a mechanism for biting-based prey capture.
Collapse
|