1
|
Schuermans S, Kestens C, Marques PE. Systemic mechanisms of necrotic cell debris clearance. Cell Death Dis 2024; 15:557. [PMID: 39090111 PMCID: PMC11294570 DOI: 10.1038/s41419-024-06947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Necrosis is an overarching term that describes cell death modalities caused by (extreme) adverse conditions in which cells lose structural integrity. A guaranteed consequence of necrosis is the production of necrotic cell remnants, or debris. Necrotic cell debris is a strong trigger of inflammation, and although inflammatory responses are required for tissue healing, necrotic debris may lead to uncontrolled immune responses and collateral damage. Besides local phagocytosis by recruited leukocytes, there is accumulating evidence that extracellular mechanisms are also involved in necrotic debris clearance. In this review, we focused on systemic clearance mechanisms present in the bloodstream and vasculature that often cooperate to drive the clearance of cell debris. We reviewed the contribution and cooperation of extracellular DNases, the actin-scavenger system, the fibrinolytic system and reticuloendothelial cells in performing clearance of necrotic debris. Moreover, associations of the (mis)functioning of these clearance systems with a variety of diseases were provided, illustrating the importance of the mechanisms of clearance of dead cells in the organism.
Collapse
Affiliation(s)
- Sara Schuermans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Caine Kestens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Hong Z, Xu H, Ni K, Yang Y, Deng S. Effect of Cyclosporin H on ischemic injury and neutrophil infiltration in cerebral infarct model of rats via PET imaging. Ann Nucl Med 2024; 38:337-349. [PMID: 38360964 DOI: 10.1007/s12149-024-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.
Collapse
Affiliation(s)
- Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi, 214063, China
| | - Hong Xu
- Department of Oncology, Changshu Hospital Affiliated to Soochow University, Changzhou No. 1 People's Hospital, Suzhou, 215006, China
| | - Kairu Ni
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Yi Yang
- Department of Nuclear Medicine, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
3
|
Rogers RS, Sharma R, Shah HB, Skinner OS, Guo XA, Panda A, Gupta R, Durham TJ, Shaughnessy KB, Mayers JR, Hibbert KA, Baron RM, Thompson BT, Mootha VK. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 2024; 20:36. [PMID: 38446263 PMCID: PMC10917846 DOI: 10.1007/s11306-024-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA.
| | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hardik B Shah
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | | | - Rahul Gupta
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Timothy J Durham
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Kelsey B Shaughnessy
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Jared R Mayers
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Tetri LH, Penatzer JA, Tsegay KB, Tawfik DS, Burk S, Lopez I, Thakkar RK, Haileselassie B. ALTERED PROFILES OF EXTRACELLULAR MITOCHONDRIAL DNA IN IMMUNOPARALYZED PEDIATRIC PATIENTS AFTER THERMAL INJURY. Shock 2024; 61:223-228. [PMID: 38010095 PMCID: PMC10922061 DOI: 10.1097/shk.0000000000002253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: Thermal injury is a major cause of morbidity and mortality in the pediatric population worldwide with secondary infection being the most common acute complication. Suppression of innate and adaptive immune function is predictive of infection in pediatric burn patients, but little is known about the mechanisms causing these effects. Circulating mitochondrial DNA (mtDNA), which induces a proinflammatory signal, has been described in multiple disease states but has not been studied in pediatric burn injuries. This study examined the quantity of circulating mtDNA and mtDNA mutations in immunocompetent (IC) and immunoparalyzed (IP) pediatric burn patients. Methods: Circulating DNA was isolated from plasma of pediatric burn patients treated at Nationwide Children's Hospital Burn Center at early (1-3 days) and late (4-7 days) time points postinjury. These patients were categorized as IP or IC based on previously established immune function testing and secondary infection. Three mitochondrial genes, D loop, ND1, and ND4, were quantified by multiplexed qPCR to assess both mtDNA quantity and mutation load. Results: At the early time point, there were no differences in plasma mtDNA quantity; however, IC patients had a progressive increase in mtDNA over time when compared with IP patients (change in ND1 copy number over time 3,880 vs. 87 copies/day, P = 0.0004). Conversely, the IP group had an increase in mtDNA mutation burden over time. Conclusion: IC patients experienced a significant increase in circulating mtDNA quantity over time, demonstrating an association between increased mtDNA release and proinflammatory phenotype in the burn patients. IP patients had significant increases in mtDNA mutation load likely representative of degree of oxidative damage. Together, these data provide further insight into the inflammatory and immunological mechanisms after pediatric thermal injury.
Collapse
Affiliation(s)
- Laura H Tetri
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford CA
- Department of Pediatrics, Stanford University, Stanford CA
| | - Julia A Penatzer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Kaleb B Tsegay
- Department of Pediatrics, Stanford University, Stanford CA
- Department of Computer Science, Stanford University, Stanford CA
| | | | - Shelby Burk
- Department of Pediatrics, Stanford University, Stanford CA
| | - Ivan Lopez
- Department of Pediatrics, Stanford University, Stanford CA
| | - Rajan K Thakkar
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH
| | | |
Collapse
|
5
|
McAllister MJ, Hall R, Whelan RJ, Fischer LJ, Chuah CS, Cartlidge PD, Drury B, Rutherford DG, Duffin RM, Cartwright JA, Dorward DA, Rossi AG, Ho GT. Formylated Peptide Receptor-1-Mediated Gut Inflammation as a Therapeutic Target in Inflammatory Bowel Disease. CROHN'S & COLITIS 360 2024; 6:otae003. [PMID: 38352118 PMCID: PMC10862654 DOI: 10.1093/crocol/otae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 02/16/2024] Open
Abstract
Background Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.
Collapse
Affiliation(s)
- Milly J McAllister
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rebecca Hall
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Robert J Whelan
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Lena J Fischer
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Cher S Chuah
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter D Cartlidge
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Broc Drury
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan G Rutherford
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rodger M Duffin
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jennifer A Cartwright
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - David A Dorward
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Adriano G Rossi
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Gwo-tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
6
|
Bosco M, Romero R, Gallo DM, Suksai M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Al Qasem M, Franchi MP, Grossman LI, Aras S, Chaiworapongsa T. Clinical chorioamnionitis at term is characterized by changes in the plasma concentration of CHCHD2/MNRR1, a mitochondrial protein. J Matern Fetal Neonatal Med 2023; 36:2222333. [PMID: 37349086 PMCID: PMC10445405 DOI: 10.1080/14767058.2023.2222333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE Mitochondrial dysfunction was observed in acute systemic inflammatory conditions such as sepsis and might be involved in sepsis-induced multi-organ failure. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2), also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1), a bi-organellar protein located in the mitochondria and the nucleus, is implicated in cell respiration, survival, and response to tissue hypoxia. Recently, the reduction of the cellular CHCHD2/MNRR1 protein, as part of mitochondrial dysfunction, has been shown to play a role in the amplification of inflammatory cytokines in a murine model of lipopolysaccharide-induced systemic inflammation. The aim of this study was to determine whether the plasma concentration of CHCHD2/MNRR1 changed during human normal pregnancy, spontaneous labor at term, and clinical chorioamnionitis at term. METHODS We conducted a cross-sectional study that included the following groups: 1) non-pregnant women (n = 17); 2) normal pregnant women at various gestational ages from the first trimester until term (n = 110); 3) women at term with spontaneous labor (n = 50); and 4) women with clinical chorioamnionitis at term in labor (n = 25). Plasma concentrations of CHCHD2/MNRR1 were assessed by an enzyme-linked immunosorbent assay. RESULTS 1) Pregnant women at term in labor with clinical chorioamnionitis had a significantly higher plasma CHCHD2/MNRR1 concentration than those in labor without chorioamnionitis (p = .003); 2) CHCHD2/MNRR1 is present in the plasma of healthy non-pregnant and normal pregnant women without significant differences in its plasma concentrations between the two groups; 3) there was no correlation between maternal plasma CHCHD2/MNRR1 concentration and gestational age at venipuncture; and 4) plasma CHCHD2/MNRR1 concentration was not significantly different in women at term in spontaneous labor compared to those not in labor. CONCLUSIONS CHCHD2/MNRR1 is physiologically present in the plasma of healthy non-pregnant and normal pregnant women, and its concentration does not change with gestational age and parturition at term. However, plasma CHCHD2/MNRR1 is elevated in women at term with clinical chorioamnionitis. CHCHD2/MNRR1, a novel bi-organellar protein located in the mitochondria and the nucleus, is released into maternal plasma during systemic inflammation.
Collapse
Affiliation(s)
- Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Malek Al Qasem
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Massimo P Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Lawrence I Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
7
|
Kim HI, Park J, Gallo D, Shankar S, Konecna B, Han Y, Banner-Goodspeed V, Capers KR, Ko SG, Otterbein LE, Itagaki K, Hauser CJ. DANGER Signals Activate G -Protein Receptor Kinases Suppressing Neutrophil Function and Predisposing to Infection After Tissue Trauma. Ann Surg 2023; 278:e1277-e1288. [PMID: 37154066 DOI: 10.1097/sla.0000000000005898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Yohan Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Valerie Banner-Goodspeed
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Krystal R Capers
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Seong-Gyu Ko
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
9
|
Janko J, Bečka E, Kmeťová K, Hudecová L, Konečná B, Celec P, Bajaj-Elliott M, Pastorek M. Neutrophil extracellular traps formation and clearance is enhanced in fever and attenuated in hypothermia. Front Immunol 2023; 14:1257422. [PMID: 37849757 PMCID: PMC10577177 DOI: 10.3389/fimmu.2023.1257422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Fever and hypothermia represent two opposite strategies for fighting systemic inflammation. Fever results in immune activation; hypothermia is associated with energy conservation. Systemic Inflammatory Response Syndrome (SIRS) remains a significant cause of mortality worldwide. SIRS can lead to a broad spectrum of clinical symptoms but importantly, patients can develop fever or hypothermia. During infection, polymorphonuclear cells (PMNs) such as neutrophils prevent pathogen dissemination through the formation of neutrophil extracellular traps (NETs) that ensnare and kill bacteria. However, when dysregulated, NETs also promote host tissue damage. Herein, we tested the hypothesis that temperature modulates NETs homeostasis in response to infection and inflammation. NETs formation was studied in response to infectious (Escherichia coli, Staphylococcus aureus) and sterile (mitochondria) agents. When compared to body temperature (37°C), NETs formation increased at 40°C; interestingly, the response was stunted at 35°C and 42°C. While CD16+ CD49d+ PMNs represent a small proportion of the neutrophil population, they formed ~45-85% of NETs irrespective of temperature. Temperature increased formyl peptide receptor 1 (FPR1) expression to a differential extent in CD16+ CD49d- vs. CD49d+ PMNSs, suggesting further complexity to neutrophil function in hypo/hyperthermic conditions. The capacity of NETs to induce Toll-like receptor 9 (TLR9)-mediated NF-κB activation was found to be temperature independent. Interestingly, NET degradation was enhanced at higher temperatures, which corresponded with greater plasma DNase activity in response to temperature increase. Collectively, our observations indicate that NETs formation and clearance are enhanced at 40°C whilst temperatures of 35°C and 42°C attenuate this response. Targeting PMN-driven immunity may represent new venues for intervention in pathological inflammation.
Collapse
Affiliation(s)
- Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Emil Bečka
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Kmeťová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Letícia Hudecová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Kim Y, Tram LTH, Kim KA, Kim BC. Defining Integrin Tension Required for Chemotaxis of Metastatic Breast Cancer Cells in Confinement. Adv Healthc Mater 2023; 12:e2202747. [PMID: 37256848 DOI: 10.1002/adhm.202202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Cancer metastasis is affected by chemical factors and physical cues. From cell adhesion to migration, mechanical tension applied to integrin expresses on the cell membrane and physical confinement significantly regulates cancer cell behaviors. Despite the physical interplay between integrins in cells and ligands in the tumor microenvironment, quantitative analysis of integrin tension during cancer cell migration in microconfined spaces remains elusive owing to the limited experimental tools. Herein, a platform termed microconfinement tension gauge tether to monitor spatial integrin tension with single-molecule precision by analyzing the epithelial-growth-factor-induced chemotaxis of metastatic human breast cancer cells in microfluidic channels is developed. The results reveal that the metastatic cancer cells exert the strongest integrin tension in the range of 54-100 pN at the leading edges of cells during chemokinetic migration on a planar surface, while the cells exert the strongest integrin tension exceeding 100 pN at the cell rear when entering microconfinement. Further analysis demonstrates that cells undergo mesenchymal migration under high integrin tension and less confinement, which is converted to amoeboid migration under low integrin tension or high confinement. In summary, the results identify a basic mechanism underlying the mechanical interactions between integrin tension and microenvironment that determines cancer invasion and metastasis.
Collapse
Affiliation(s)
- Young Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Le Thi Hong Tram
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyung Ah Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byoung Choul Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
11
|
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? FEBS J 2023; 290:4395-4418. [PMID: 35731715 DOI: 10.1111/febs.16563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
In accordance with the endosymbiotic theory, mitochondrial components bear characteristic prokaryotic signatures, which act as immunomodulatory molecules when released into the extramitochondrial compartment. These endogenous immune triggers, called mitochondrial damage-associated molecular patterns (mtDAMPs), have been implicated in the pathogenesis of various diseases, yet their role remains largely unexplored. In this review, we summarise the available literature on mtDAMPs in diseases, with a special focus on respiratory diseases. We highlight the need to bolster mtDAMP research using a multipronged approach, to study their effect on specific cell types, receptors and machinery in pathologies. We emphasise the lacunae in the current understanding of mtDAMPs, particularly in their cellular release and the chemical modifications they undergo. Finally, we conclude by proposing additional effects of mtDAMPs in diseases, specifically their role in modulating the immune system.
Collapse
Affiliation(s)
- Mayank Garg
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Johri
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnendu Chakraborty
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
12
|
Abstract
Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Carbonnier V, Le Naour J, Bachelot T, Vacchelli E, André F, Delaloge S, Kroemer G. Rs867228 in FPR1 accelerates the manifestation of luminal B breast cancer. Oncoimmunology 2023; 12:2189823. [PMID: 36970071 PMCID: PMC10038022 DOI: 10.1080/2162402x.2023.2189823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Formyl peptide receptor-1 (FPR1) is a pathogen recognition receptor involved in the detection of bacteria, in the control of inflammation, as well as in cancer immunosurveillance. A single nucleotide polymorphism in FPR1, rs867228, provokes a loss-of-function phenotype. In a bioinformatic study performed on The Cancer Genome Atlas (TCGA), we observed that homo-or heterozygosity for rs867228 in FPR1 (which affects approximately one-third of the population across continents) accelerates age at diagnosis of specific carcinomas including luminal B breast cancer by 4.9 years. To validate this finding, we genotyped 215 patients with metastatic luminal B mammary carcinomas from the SNPs To Risk of Metastasis (SToRM) cohort. The first diagnosis of luminal B breast cancer occurred at an age of 49.2 years for individuals bearing the dysfunctional TT or TG alleles (n = 73) and 55.5 years for patients the functional GG alleles (n = 141), meaning that rs867228 accelerated the age of diagnosis by 6.3 years (p=0.0077, Mann & Whitney). These results confirm our original observation in an independent validation cohort. We speculate that it may be useful to include the detection of rs867228 in breast cancer screening campaigns for selectively increasing the frequency and stringency of examinations starting at a relatively young age.
Collapse
Affiliation(s)
- Vincent Carbonnier
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
| | - Thomas Bachelot
- Centre Léon Bérard, Département de Cancérologie Médicale, Lyon, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fabrice André
- Université Paris Saclay, Faculty of Medicine Kremlin Bicêtre, Le Kremlin Bicêtre, France
- Department of Medical Oncology, INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- CONTACT Guido Kroemer Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, Paris75006, France
| |
Collapse
|
14
|
Tiwari-Heckler S, Robson SC, Longhi MS. Mitochondria Drive Immune Responses in Critical Disease. Cells 2022; 11:cells11244113. [PMID: 36552877 PMCID: PMC9777392 DOI: 10.3390/cells11244113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondria engage in multiple cellular and extracellular signaling pathways ranging from metabolic control, antiviral and antibacterial host defense to the modulation of inflammatory responses following cellular damage and stress. The remarkable contributions of these organelles to innate and adaptive immunity, shape cell phenotype and modulate their functions during infection, after trauma and in the setting of inflammatory disease. We review the latest knowledge of mitochondrial biology and then discuss how these organelles may impact immune cells to drive aberrant immune responses in critical disease.
Collapse
Affiliation(s)
- Shilpa Tiwari-Heckler
- Department of Gastroenterology, University Hospital Heidelberg Medical Clinic, 69120 Heidelberg, Germany
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
15
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
16
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 508] [Impact Index Per Article: 254.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Kim HI, Park J, Konecna B, Huang W, Riça I, Gallo D, Otterbein LE, Itagaki K, Hauser CJ. Plasma and wound fluids from trauma patients suppress neutrophil extracellular respiratory burst. J Trauma Acute Care Surg 2022; 92:330-338. [PMID: 34789698 PMCID: PMC8792304 DOI: 10.1097/ta.0000000000003461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Trauma increases susceptibility to secondary bacterial infections. The events suppressing antimicrobial immunity are unclear. Polymorphonuclear neutrophils (PMNs) migrate toward bacteria using chemotaxis, trap them in extracellular neutrophil extracellular traps, and kill them using respiratory burst (RB). We hypothesized that plasma and wound fluids from trauma patients alter PMN function. METHODS Volunteer PMNs were incubated in plasma or wound fluids from trauma patients (days 0 and 1, days 2 and 3), and their functions were compared with PMNs incubated in volunteer plasma. Chemotaxis was assessed in transwells. Luminometry assessed total and intracellular RB responses to receptor-dependent and independent stimulants. Neutrophil extracellular trap formation was assessed using elastase assays. The role of tissue necrosis in creating functionally suppressive systemic PMN environments was assessed using a novel pig model where PMNs were incubated in uninjured pig plasma or plasma from pigs undergoing intraperitoneal instillation of liver slurry. RESULTS Both plasma and wound fluids from trauma patients markedly suppress total PMN RB. Intracellular RB is unchanged, implicating suppression of extracellular RB. Wound fluids are more suppressive than plasma. Biofluids suppressed RB maximally early after injury and their effects decayed with time. Chemotaxis and neutrophil extracellular trap formation were suppressed by biofluids similarly. Lastly, plasma from pigs undergoing abdominal liver slurry instillation suppressed PMN RB, paralleling suppression by human trauma biofluids. CONCLUSION Trauma plasma and wound fluids suppress RB and other key PMNs antimicrobial functions. Circulating suppressive signals can be derived from injured or necrotic tissue at wound sites, suggesting a key mechanism by which tissue injuries can put the host at risk for infection.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Jinbong Park
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
- Deparment of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Ingred Riça
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Carl J. Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|