1
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Wang H, Liao S, Yu X, Zhang J, Zhou ZH. TomoNet: A streamlined cryogenic electron tomography software pipeline with automatic particle picking on flexible lattices. BIOLOGICAL IMAGING 2024; 4:e7. [PMID: 38828212 PMCID: PMC11140495 DOI: 10.1017/s2633903x24000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024]
Abstract
Cryogenic electron tomography (cryoET) is capable of determining in situ biological structures of molecular complexes at near-atomic resolution by averaging half a million subtomograms. While abundant complexes/particles are often clustered in arrays, precisely locating and seamlessly averaging such particles across many tomograms present major challenges. Here, we developed TomoNet, a software package with a modern graphical user interface to carry out the entire pipeline of cryoET and subtomogram averaging to achieve high resolution. TomoNet features built-in automatic particle picking and three-dimensional (3D) classification functions and integrates commonly used packages to streamline high-resolution subtomogram averaging for structures in 1D, 2D, or 3D arrays. Automatic particle picking is accomplished in two complementary ways: one based on template matching and the other using deep learning. TomoNet's hierarchical file organization and visual display facilitate efficient data management as required for large cryoET datasets. Applications of TomoNet to three types of datasets demonstrate its capability of efficient and accurate particle picking on flexible and imperfect lattices to obtain high-resolution 3D biological structures: virus-like particles, bacterial surface layers within cellular lamellae, and membranes decorated with nuclear egress protein complexes. These results demonstrate TomoNet's potential for broad applications to various cryoET projects targeting high-resolution in situ structures.
Collapse
Affiliation(s)
- Hui Wang
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Shiqing Liao
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Xinye Yu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Jiayan Zhang
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Wolf T, Grau C, Rosengarten JF, Stitz J, Wilkens J, Barbe S. Investigation of the Electrokinetic Properties of HIV-Based Virus-Like Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4762-4771. [PMID: 38385169 DOI: 10.1021/acs.langmuir.3c03535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The antigen density on the surface of HIV-based virus-like particles (VLPs) plays a crucial role in the improvement of HIV vaccine potency. HIV VLPs consist of a dense protein core, which is surrounded by a lipid bilayer and whose surface is usually decorated with antigenic glycoproteins. The successful downstream processing of these particles is challenging, and the high-resolution and cost-efficient purification of HIV-based VLPs has not yet been achieved. Chromatography, one of the major unit operations involved in HIV VLP purification strategies, is usually carried out by means of ion exchangers or ion-exchange membranes. Understanding the electrokinetic behavior of HIV-based VLPs may help to improve the adjustment and efficiency of the corresponding chromatographic processes. In this study, we investigated the electrokinetics and aggregation of both undecorated and decorated VLPs and interpreted the data from the perspective of the soft particle model developed by Ohshima (OSPM), which fails to fully predict the behavior of the studied VLPs. Post-Ohshima literature, and particularly the soft multilayer particle model developed by Langlet et al., provides an alternative theoretical framework to overcome the limits of the OSPM. We finally hypothesized that the electrophoretic mobility of HIV-based VLPs is controlled by an electrohydrodynamic interplay between envelope glycoproteins, lipid bilayer, and Gag envelope.
Collapse
Affiliation(s)
- Tobias Wolf
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Christoph Grau
- Research Group Colloid Chemistry, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Physical Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| | - Jamila Franca Rosengarten
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Jan Wilkens
- Research Group Colloid Chemistry, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Stéphan Barbe
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| |
Collapse
|
5
|
Banerjee P, Qu K, Briggs JAG, Voth GA. Molecular dynamics simulations of HIV-1 matrix-membrane interactions at different stages of viral maturation. Biophys J 2024; 123:389-406. [PMID: 38196190 PMCID: PMC10870173 DOI: 10.1016/j.bpj.2024.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Although the structural rearrangement of the membrane-bound matrix (MA) protein trimers upon HIV-1 maturation has been reported, the consequences of MA maturation on the MA-lipid interactions are not well understood. Long-timescale molecular dynamics simulations of the MA multimeric assemblies of immature and mature virus particles with our realistic asymmetric membrane model have explored MA-lipid interactions and lateral organization of lipids around MA complexes. The number of stable MA-phosphatidylserine and MA-phosphatidylinositol 4,5-bisphosphate (PIP2) interactions at the trimeric interface of the mature MA complex is observed to be greater compared to that of the immature MA complex. Our simulations identified an alternative PIP2-binding site in the immature MA complex where the multivalent headgroup of a PIP2 lipid with a greater negative charge binds to multiple basic amino acid residues such as ARG3 residues of both the MA monomers at the trimeric interface and highly basic region (HBR) residues (LYS29, LYS31) of one of the MA monomers. Our enhanced sampling simulations have explored the conformational space of phospholipids at different binding sites of the trimer-trimer interface of MA complexes that are not accessible by conventional unbiased molecular dynamics. Unlike the immature MA complex, the 2' acyl tail of two PIP2 lipids at the trimeric interface of the mature MA complex is observed to sample stable binding pockets of MA consisting of helix-4 residues. Together, our results provide molecular-level insights into the interactions of MA trimeric complexes with membrane and different lipid conformations at the specific binding sites of MA protein before and after viral maturation.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Kun Qu
- Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Planegg, Germany
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. Biophys J 2024; 123:42-56. [PMID: 37978800 PMCID: PMC10808027 DOI: 10.1016/j.bpj.2023.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
7
|
Wu J, Xue W, Voth GA. K-Means Clustering Coarse-Graining (KMC-CG): A Next Generation Methodology for Determining Optimal Coarse-Grained Mappings of Large Biomolecules. J Chem Theory Comput 2023; 19:8987-8997. [PMID: 37957028 PMCID: PMC10720621 DOI: 10.1021/acs.jctc.3c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Coarse-grained (CG) molecular dynamics (MD) has become a method of choice for simulating various large scale biomolecular processes; therefore, the systematic definition of the CG mappings for biomolecules remains an important topic. Appropriate CG mappings can significantly enhance the representability of a CG model and improve its ability to capture critical features of large biomolecules. In this work, we present a systematic and more generalized method called K-means clustering coarse-graining (KMC-CG), which builds on the earlier approach of essential dynamics coarse-graining (ED-CG). KMC-CG removes the sequence-dependent constraints of ED-CG, allowing it to explore a more extensive space and thus enabling the discovery of more physically optimal CG mappings. Furthermore, the implementation of the K-means clustering algorithm can variationally optimize the CG mapping with efficiency and stability. This new method is tested in three cases: ATP-bound G-actin, the HIV-1 CA pentamer, and the Arp2/3 complex. In these examples, the CG models generated by KMC-CG are seen to better capture the structural, dynamic, and functional domains. KMC-CG therefore provides a robust and consistent approach to generating CG models of large biomolecules that can then be more accurately parametrized by either bottom-up or top-down CG force fields.
Collapse
Affiliation(s)
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, The James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
9
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553549. [PMID: 37645781 PMCID: PMC10462060 DOI: 10.1101/2023.08.16.553549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-gRNA interactions play a crucial role in the multimerization process, which is yet to be fully understood. We have performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model (hENM) applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to impact mainly the SP1 domain of the 18-mer and the MA-CA linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the NC domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, as well as regulates the dynamic organization of the local membrane region itself. Significance Gag(Pr 55 Gag ) polyprotein orchestrates many essential events in HIV-1 assembly, including packaging of the genomic RNA (gRNA) in the immature virion. Although various experimental techniques, such as cryo-ET, X-ray, and NMR, have revealed structural properties of individual domains in the immature Gag clusters, structural and biophysical characterization of a full-length Gag molecule remains a challenge for existing experimental techniques. Using atomistic molecular dynamics simulations of the different model systems of Gag polyprotein, we present here a detailed structural characterization of Gag molecules in different multimerization states and interrogate the synergy between Gag-Gag, Gag-membrane, and Gag-gRNA interactions during the viral assembly process.
Collapse
|
10
|
Qian Y, Evans D, Mishra B, Fu Y, Liu ZH, Guo S, Johnson ME. Temporal control by cofactors prevents kinetic trapping in retroviral Gag lattice assembly. Biophys J 2023; 122:3173-3190. [PMID: 37393432 PMCID: PMC10432227 DOI: 10.1016/j.bpj.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
For retroviruses like HIV to proliferate, they must form virions shaped by the self-assembly of Gag polyproteins into a rigid lattice. This immature Gag lattice has been structurally characterized and reconstituted in vitro, revealing the sensitivity of lattice assembly to multiple cofactors. Due to this sensitivity, the energetic criterion for forming stable lattices is unknown, as are their corresponding rates. Here, we use a reaction-diffusion model designed from the cryo-ET structure of the immature Gag lattice to map a phase diagram of assembly outcomes controlled by experimentally constrained rates and free energies, over experimentally relevant timescales. We find that productive assembly of complete lattices in bulk solution is extraordinarily difficult due to the large size of this ∼3700 monomer complex. Multiple Gag lattices nucleate before growth can complete, resulting in loss of free monomers and frequent kinetic trapping. We therefore derive a time-dependent protocol to titrate or "activate" the Gag monomers slowly within the solution volume, mimicking the biological roles of cofactors. This general strategy works remarkably well, yielding productive growth of self-assembled lattices for multiple interaction strengths and binding rates. By comparing to the in vitro assembly kinetics, we can estimate bounds on rates of Gag binding to Gag and the cellular cofactor IP6. Our results show that Gag binding to IP6 can provide the additional time delay necessary to support smooth growth of the immature lattice with relatively fast assembly kinetics, mostly avoiding kinetic traps. Our work provides a foundation for predicting and disrupting formation of the immature Gag lattice via targeting specific protein-protein binding interactions.
Collapse
Affiliation(s)
- Yian Qian
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel Evans
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Bhavya Mishra
- Department of Physics, and Center for Cellular and Biomolecular Machines, University of California, Merced, California
| | - Yiben Fu
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Zixiu Hugh Liu
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sikao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
11
|
Guo S, Saha I, Saffarian S, Johnson ME. Structure of the HIV immature lattice allows for essential lattice remodeling within budded virions. eLife 2023; 12:e84881. [PMID: 37435945 PMCID: PMC10361719 DOI: 10.7554/elife.84881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/12/2023] [Indexed: 07/13/2023] Open
Abstract
For HIV virions to become infectious, the immature lattice of Gag polyproteins attached to the virion membrane must be cleaved. Cleavage cannot initiate without the protease formed by the homo-dimerization of domains linked to Gag. However, only 5% of the Gag polyproteins, termed Gag-Pol, carry this protease domain, and they are embedded within the structured lattice. The mechanism of Gag-Pol dimerization is unknown. Here, we use spatial stochastic computer simulations of the immature Gag lattice as derived from experimental structures, showing that dynamics of the lattice on the membrane is unavoidable due to the missing 1/3 of the spherical protein coat. These dynamics allow for Gag-Pol molecules carrying the protease domains to detach and reattach at new places within the lattice. Surprisingly, dimerization timescales of minutes or less are achievable for realistic binding energies and rates despite retaining most of the large-scale lattice structure. We derive a formula allowing extrapolation of timescales as a function of interaction free energy and binding rate, thus predicting how additional stabilization of the lattice would impact dimerization times. We further show that during assembly, dimerization of Gag-Pol is highly likely and therefore must be actively suppressed to prevent early activation. By direct comparison to recent biochemical measurements within budded virions, we find that only moderately stable hexamer contacts (-12kBT<∆G<-8kBT) retain both the dynamics and lattice structures that are consistent with experiment. These dynamics are likely essential for proper maturation, and our models quantify and predict lattice dynamics and protease dimerization timescales that define a key step in understanding formation of infectious viruses.
Collapse
Affiliation(s)
- Sikao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of HealthFrederickUnited States
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of UtahSalt Lake CityUnited States
- Department of Physics and Astronomy, University of UtahSalt Lake CityUnited States
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
12
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Mangukia TA, Santos JRL, Sun W, Cesarz D, Ortíz Hidalgo CD, Marcet-Palacios M. Validation of HIV-1 MA Shell Structural Arrangements and Env Protein Interactions Predict a Role of the MA Shell in Viral Maturation. Viruses 2023; 15:v15040893. [PMID: 37112873 PMCID: PMC10144363 DOI: 10.3390/v15040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The molecular structure of the type 1 human immunodeficiency virus (HIV-1) is tightly linked to the mechanism of viral entry. The spike envelope (Env) glycoproteins and their interaction with the underlying matrix (MA) shell have emerged as key components of the entry mechanism. Microscopy evidence suggests that the MA shell does not span the entire inner lipid surface of the virus, producing a region of the virus that completely lacks an MA shell. Interestingly, evidence also suggests that Env proteins cluster during viral maturation and, thus, it is likely that this event takes place in the region of the virus that lacks an MA shell. We have previously called this part of the virus a fusion hub to highlight its importance during viral entry. While the structure of the MA shell is in contention due to the unaddressed inconsistencies between its reported hexagonal arrangement and the physical plausibility of such a structure, it is possible that a limited number of MA hexagons could form. In this study, we measured the size of the fusion hub by analysing the cryo-EM maps of eight HIV-1 particles and measured the size of the MA shell gap to be 66.3 nm ± 15.0 nm. We also validated the feasibility of the hexagonal MA shell arrangement in six reported structures and determined the plausible components of these structures that do not violate geometrical limitations. We also examined the cytosolic domain of Env proteins and discovered a possible interaction between adjacent Env proteins that could explain the stability of cluster formation. We present an updated HIV-1 model and postulate novel roles of the MA shell and Env structure.
Collapse
Affiliation(s)
- Tarana A. Mangukia
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Joy Ramielle L. Santos
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Weijie Sun
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Dominik Cesarz
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | - Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, Northern Alberta Institute of Technology, Edmonton, AB T5G 2R1, Canada
- Correspondence:
| |
Collapse
|
14
|
Zhou AXZ, Hammond JA, Sheng K, Millar DP, Williamson JR. Early HIV-1 Gag Assembly on Lipid Membrane with vRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525415. [PMID: 36747785 PMCID: PMC9901173 DOI: 10.1101/2023.01.27.525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mass photometry (MP) was used to investigate the assembly of myristoylated full-length HIV-1 Gag (myr-Gag) and vRNA 5’ UTR fragment in a supported lipid bilayer (SLB) model system. The MP trajectories demonstrated that Gag trimerization on the membrane is a key step of early Gag assembly in the presence of vRNA. Growth of myr-Gag oligomers requires vRNA, occuring by addition of 1 or 2 monomers at a time from solution. These data support a model where formation of the Gag hexamers characteristic of the immature capsid lattice occurs by a gradual edge expansion, following a trimeric nucleation event. These dynamic single molecule data involving protein, RNA, and lipid components together, provide novel and fundamental insights into the initiation of virus capsid assembly.
Collapse
|
15
|
Isotropic reconstruction for electron tomography with deep learning. Nat Commun 2022; 13:6482. [PMID: 36309499 PMCID: PMC9617606 DOI: 10.1038/s41467-022-33957-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ. However, anisotropic resolution arising from the intrinsic "missing-wedge" problem has presented major challenges in visualization and interpretation of tomograms. Here, we have developed IsoNet, a deep learning-based software package that iteratively reconstructs the missing-wedge information and increases signal-to-noise ratio, using the knowledge learned from raw tomograms. Without the need for sub-tomogram averaging, IsoNet generates tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three representative types of cryoET data demonstrate greatly improved structural interpretability: resolving lattice defects in immature HIV particles, establishing architecture of the paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without sub-tomogram averaging. Its application to high-resolution cellular tomograms should also help identify differently oriented complexes of the same kind for sub-tomogram averaging.
Collapse
|
16
|
Gutiérrez AB, Machorro-Martínez BI, Quintana J, Armas-Pérez JC, Mendoza P, Lucero JME, Chapela GA. HIV-1 immature virion and other networks formation with simple patchy disks. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Anthony B. Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - Jaqueline Quintana
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México
| | - Julio C. Armas-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, León, México
| | - Paola Mendoza
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - Gustavo A. Chapela
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| |
Collapse
|
17
|
Mohajerani F, Tyukodi B, Schlicksup CJ, Hadden-Perilla JA, Zlotnick A, Hagan MF. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS NANO 2022; 16:13845-13859. [PMID: 36054910 PMCID: PMC10273259 DOI: 10.1021/acsnano.2c02119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar-Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein-protein binding affinities.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
- Department of Physics, Babeş-Bolyai University, 400084Cluj-Napoca, Romania
| | - Christopher J Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| |
Collapse
|
18
|
Marie V, Gordon ML. The HIV-1 Gag Protein Displays Extensive Functional and Structural Roles in Virus Replication and Infectivity. Int J Mol Sci 2022; 23:7569. [PMID: 35886917 PMCID: PMC9323242 DOI: 10.3390/ijms23147569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023] Open
Abstract
Once merely thought of as the protein responsible for the overall physical nature of the human immunodeficiency virus type 1 (HIV-1), the Gag polyprotein has since been elucidated to have several roles in viral replication and functionality. Over the years, extensive research into the polyproteins' structure has revealed that Gag can mediate its own trafficking to the plasma membrane, it can interact with several host factors and can even aid in viral genome packaging. Not surprisingly, Gag has also been associated with HIV-1 drug resistance and even treatment failure. Therefore, this review provides an extensive overview of the structural and functional roles of the HIV-1 Gag domains in virion integrity, functionality and infectivity.
Collapse
Affiliation(s)
- Veronna Marie
- KwaZulu-Natal Research, Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban 4041, South Africa;
| | | |
Collapse
|
19
|
Pak A, Gupta M, Yeager M, Voth GA. Inositol Hexakisphosphate (IP6) Accelerates Immature HIV-1 Gag Protein Assembly toward Kinetically Trapped Morphologies. J Am Chem Soc 2022; 144:10417-10428. [PMID: 35666943 PMCID: PMC9204763 DOI: 10.1021/jacs.2c02568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During the late stages of the HIV-1 lifecycle, immature virions are produced by the concerted activity of Gag polyproteins, primarily mediated by the capsid (CA) and spacer peptide 1 (SP1) domains, which assemble into a spherical lattice, package viral genomic RNA, and deform the plasma membrane. Recently, inositol hexakisphosphate (IP6) has been identified as an essential assembly cofactor that efficiently produces both immature virions in vivo and immature virus-like particles in vitro. To date, however, several distinct mechanistic roles for IP6 have been proposed on the basis of independent functional, structural, and kinetic studies. In this work, we investigate the molecular influence of IP6 on the structural outcomes and dynamics of CA/SP1 assembly using coarse-grained (CG) molecular dynamics (MD) simulations and free energy calculations. Here, we derive a bottom-up, low-resolution, and implicit-solvent CG model of CA/SP1 and IP6, and simulate their assembly under conditions that emulate both in vitro and in vivo systems. Our analysis identifies IP6 as an assembly accelerant that promotes curvature generation and fissure-like defects throughout the lattice. Our findings suggest that IP6 induces kinetically trapped immature morphologies, which may be physiologically important for later stages of viral morphogenesis and potentially useful for virus-like particle technologies.
Collapse
Affiliation(s)
- Alexander
J. Pak
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Manish Gupta
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Mark Yeager
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States,Center
for Membrane Biology, University of Virginia
School of Medicine, Charlottesville, Virginia 22908, United States, United States,Cardiovascular
Research Center, University of Virginia
School of Medicine, Charlottesville, Virginia 22908, United States,Department
of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States,E-mail:
| |
Collapse
|
20
|
Sumner C, Ono A. Relationship between HIV-1 Gag Multimerization and Membrane Binding. Viruses 2022; 14:v14030622. [PMID: 35337029 PMCID: PMC8949992 DOI: 10.3390/v14030622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
HIV-1 viral particle assembly occurs specifically at the plasma membrane and is driven primarily by the viral polyprotein Gag. Selective association of Gag with the plasma membrane is a key step in the viral assembly pathway, which is traditionally attributed to the MA domain. MA regulates specific plasma membrane binding through two primary mechanisms including: (1) specific interaction of the MA highly basic region (HBR) with the plasma membrane phospholipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2], and (2) tRNA binding to the MA HBR, which prevents Gag association with non-PI(4,5)P2 containing membranes. Gag multimerization, driven by both CA–CA inter-protein interactions and NC-RNA binding, also plays an essential role in viral particle assembly, mediating the establishment and growth of the immature Gag lattice on the plasma membrane. In addition to these functions, the multimerization of HIV-1 Gag has also been demonstrated to enhance its membrane binding activity through the MA domain. This review provides an overview of the mechanisms regulating Gag membrane binding through the MA domain and multimerization through the CA and NC domains, and examines how these two functions are intertwined, allowing for multimerization mediated enhancement of Gag membrane binding.
Collapse
|
21
|
Obr M, JH Hagen W, Dick RA, Yu L, Kotecha A, KM Schur F. Exploring high-resolution cryo-ET and subtomogram averaging capabilities of contemporary DEDs. J Struct Biol 2022; 214:107852. [DOI: 10.1016/j.jsb.2022.107852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/26/2023]
|
22
|
Vankadari N, Shepherd DC, Carter SD, Ghosal D. Three-dimensional insights into human enveloped viruses in vitro and in situ. Biochem Soc Trans 2022; 50:95-105. [PMID: 35076655 PMCID: PMC9022983 DOI: 10.1042/bst20210433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Viruses can be enveloped or non-enveloped, and require a host cell to replicate and package their genomes into new virions to infect new cells. To accomplish this task, viruses hijack the host-cell machinery to facilitate their replication by subverting and manipulating normal host cell function. Enveloped viruses can have severe consequences for human health, causing various diseases such as acquired immunodeficiency syndrome (AIDS), seasonal influenza, COVID-19, and Ebola virus disease. The complex arrangement and pleomorphic architecture of many enveloped viruses pose a challenge for the more widely used structural biology techniques, such as X-ray crystallography. Cryo-electron tomography (cryo-ET), however, is a particularly well-suited tool for overcoming the limitations associated with visualizing the irregular shapes and morphology enveloped viruses possess at macromolecular resolution. The purpose of this review is to explore the latest structural insights that cryo-ET has revealed about enveloped viruses, with particular attention given to their architectures, mechanisms of entry, replication, assembly, maturation and egress during infection. Cryo-ET is unique in its ability to visualize cellular landscapes at 3-5 nanometer resolution. Therefore, it is the most suited technique to study asymmetric elements and structural rearrangements of enveloped viruses during infection in their native cellular context.
Collapse
Affiliation(s)
- Naveen Vankadari
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen D. Carter
- Centre for Virus Research, Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, U.K
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH, Lange MJ. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 2022; 50:1701-1717. [PMID: 35018437 PMCID: PMC8860611 DOI: 10.1093/nar/gkab1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.
Collapse
Affiliation(s)
- Paige R Gruenke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Rachna Aneja
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Welbourn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Obiaara B Ukah
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Pak AJ, Purdy MD, Yeager M, Voth GA. Preservation of HIV-1 Gag Helical Bundle Symmetry by Bevirimat Is Central to Maturation Inhibition. J Am Chem Soc 2021; 143:19137-19148. [PMID: 34739240 DOI: 10.1021/jacs.1c08922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly and maturation of human immunodeficiency virus type 1 (HIV-1) require proteolytic cleavage of the Gag polyprotein. The rate-limiting step resides at the junction between the capsid protein CA and spacer peptide 1, which assembles as a six-helix bundle (6HB). Bevirimat (BVM), the first-in-class maturation inhibitor drug, targets the 6HB and impedes proteolytic cleavage, yet the molecular mechanisms of its activity, and relatedly, the escape mechanisms of mutant viruses, remain unclear. Here, we employed extensive molecular dynamics (MD) simulations and free energy calculations to quantitatively investigate molecular structure-activity relationships, comparing wild-type and mutant viruses in the presence and absence of BVM and inositol hexakisphosphate (IP6), an assembly cofactor. Our analysis shows that the efficacy of BVM is directly correlated with preservation of 6-fold symmetry in the 6HB, which exists as an ensemble of structural states. We identified two primary escape mechanisms, and both lead to loss of symmetry, thereby facilitating helix uncoiling to aid access of protease. Our findings also highlight specific interactions that can be targeted for improved inhibitor activity and support the use of MD simulations for future inhibitor design.
Collapse
Affiliation(s)
- Alexander J Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
25
|
Saha I, Preece B, Peterson A, Durden H, MacArthur B, Lowe J, Belnap D, Vershinin M, Saffarian S. Gag-Gag Interactions Are Insufficient to Fully Stabilize and Order the Immature HIV Gag Lattice. Viruses 2021; 13:1946. [PMID: 34696376 PMCID: PMC8540168 DOI: 10.3390/v13101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Immature HIV virions harbor a lattice of Gag molecules with significant ordering in CA-NTD, CA-CTD and SP1 regions. This ordering plays a major role during HIV maturation. To test the condition in which the Gag lattice forms in vivo, we assembled virus like particles (VLPs) by expressing only HIV Gag in mammalian cells. Here we show that these VLPs incorporate a similar number of Gag molecules compared to immature HIV virions. However, within these VLPs, Gag molecules diffuse with a pseudo-diffusion rate of 10 nm2/s, this pseudo-diffusion is abrogated in the presence of melittin and is sensitive to mutations within the SP1 region. Using cryotomography, we show that unlike immature HIV virions, in the Gag lattice of VLPs the CA-CTD and SP1 regions are significantly less ordered. Our observations suggest that within immature HIV virions, other viral factors in addition to Gag, contribute to ordering in the CA-CTD and SP1 regions.
Collapse
Affiliation(s)
- Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Benjamin Preece
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Abby Peterson
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian MacArthur
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Jake Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| | - David Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Vershinin
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| |
Collapse
|
26
|
Qu K, Ke Z, Zila V, Anders-Össwein M, Glass B, Mücksch F, Müller R, Schultz C, Müller B, Kräusslich HG, Briggs JAG. Maturation of the matrix and viral membrane of HIV-1. Science 2021; 373:700-704. [PMID: 34353956 DOI: 10.1126/science.abe6821] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Gag, the primary structural protein of HIV-1, is recruited to the plasma membrane for virus assembly by its matrix (MA) domain. Gag is subsequently cleaved into its component domains, causing structural maturation to repurpose the virion for cell entry. We determined the structure and arrangement of MA within immature and mature HIV-1 through cryo-electron tomography. We found that MA rearranges between two different hexameric lattices upon maturation. In mature HIV-1, a lipid extends out of the membrane to bind with a pocket in MA. Our data suggest that proteolytic maturation of HIV-1 not only assembles the viral capsid surrounding the genome but also repurposes the membrane-bound MA lattice for an entry or postentry function and results in the partial removal of up to 2500 lipids from the viral membrane.
Collapse
Affiliation(s)
- Kun Qu
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| | - Zunlong Ke
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Vojtech Zila
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Bärbel Glass
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Frauke Mücksch
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Rainer Müller
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Müller
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - John A G Briggs
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
27
|
Multiscale simulations of large complexes in conjunction with cryo-EM analysis. Curr Opin Struct Biol 2021; 72:27-32. [PMID: 34399155 DOI: 10.1016/j.sbi.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
The cellular environment is highly crowded with most proteins and RNA/DNA forming homomeric and heteromeric complexes. Essential questions regarding how these complexes switch between functional, rest, and abnormal states with regulators or modifications remain challenging and complicated. Here, we review the recent progress integrating cryoelectron microscopy and multiscale molecular modeling to understand the dynamics and function-related mechanism in protein-RNA/DNA complexes, protein-protein complexes/assemblies, and membrane protein complexes. One future direction of multiscale simulations will be to interpret the large complex multibody regulation in assembly-induced function enhancement in conjunction with advanced atomic resolution structural-biology techniques and specialized computing architectures.
Collapse
|
28
|
Challenging the Existing Model of the Hexameric HIV-1 Gag Lattice and MA Shell Superstructure: Implications for Viral Entry. Viruses 2021; 13:v13081515. [PMID: 34452379 PMCID: PMC8402665 DOI: 10.3390/v13081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Despite type 1 human immunodeficiency virus (HIV-1) being discovered in the early 1980s, significant knowledge gaps remain in our understanding of the superstructure of the HIV-1 matrix (MA) shell. Current viral assembly models assume that the MA shell originates via recruitment of group-specific antigen (Gag) polyproteins into a hexagonal lattice but fails to resolve and explain lattice overlapping that occurs when the membrane is folded into a spherical/ellipsoidal shape. It further fails to address how the shell recruits, interacts with and encompasses the viral spike envelope (Env) glycoproteins. These Env glycoproteins are crucial as they facilitate viral entry by interacting with receptors and coreceptors located on T-cells. In our previous publication, we proposed a six-lune hosohedral structure, snowflake-like model for the MA shell of HIV-1. In this article, we improve upon the six-lune hosohedral structure by incorporating into our algorithm the recruitment of complete Env glycoproteins. We generated the Env glycoprotein assembly using a combination of predetermined Env glycoprotein domains from X-ray crystallography, nuclear magnetic resonance (NMR), cryoelectron tomography, and three-dimensional prediction tools. Our novel MA shell model comprises 1028 MA trimers and 14 Env glycoproteins. Our model demonstrates the movement of Env glycoproteins in the interlunar spaces, with effective clustering at the fusion hub, where multiple Env complexes bind to T-cell receptors during the process of viral entry. Elucidating the HIV-1 MA shell structure and its interaction with the Env glycoproteins is a key step toward understanding the mechanism of HIV-1 entry.
Collapse
|
29
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Piai A, Fu Q, Sharp AK, Bighi B, Brown AM, Chou JJ. NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology. J Am Chem Soc 2021; 143:6609-6615. [PMID: 33882664 DOI: 10.1021/jacs.1c01762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion and viral entry. The membrane-interacting regions of the Env, including the membrane-proximal external region (MPER), the transmembrane domain (TMD), and the cytoplasmic tail (CT), not only are essential for fusion and Env incorporation but also can strongly influence the antigenicity of the Env. Previous studies have incrementally revealed the structures of the MPER, the TMD, and the KS-LLP2 regions of the CT. Here, we determined the NMR structure of the full-length CT using a protein fragment comprising the TMD and the CT in bicelles that mimic a lipid bilayer, and by integrating the new NMR data and those acquired previously on other gp41 fragments, we derived a model of the entire membrane-interacting region of the Env. The structure shows that the CT forms a large trimeric baseplate around the TMD trimer, and by residing in the headgroup region of the lipid bilayer, the baseplate causes severe exclusion of lipid in the cytoleaflet of the bilayer. All-atom molecular dynamics simulations showed that the overall structure of the MPER-TMD-CT can be stable in a viral membrane and that a concerted movement of the KS-LLP2 region compensates for the lipid exclusion in order to maintain both structure and membrane integrity. Our structural and simulation results provide a framework for future research to manipulate the membrane structure to modulate the antigenicity of the Env for vaccine development and for mutagenesis studies for investigating membrane fusion and Env interaction with the matrix proteins.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Beatrice Bighi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|