1
|
Blumenstein J, Dostálová H, Rucká L, Štěpánek V, Busche T, Kalinowski J, Pátek M, Barvík I. Promoter recognition specificity of Corynebacterium glutamicum stress response sigma factors σ D and σ H deciphered using computer modeling and point mutagenesis. J Comput Aided Mol Des 2024; 39:1. [PMID: 39585436 PMCID: PMC11588781 DOI: 10.1007/s10822-024-00577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to reveal interactions of the stress response sigma subunits (factors) σD and σH of RNA polymerase and promoters in Gram-positive bacterium Corynebacterium glutamicum by combining wet-lab obtained data and in silico modeling. Computer modeling-guided point mutagenesis of C. glutamicum σH subunit led to the creation of a panel of σH variants. Their ability to initiate transcription from naturally occurring hybrid σD/σH-dependent promoter Pcg0441 and two control canonical promoters (σD-dependent PrsdA and σH-dependent PuvrD3) was measured and interpreted using molecular dynamics simulations of homology models of all complexes. The results led us to design the artificial hybrid promoter PD35H10 combining the -10 element of the PuvrD3 promoter and the -35 element of the PrsdA promoter. This artificial hybrid promoter PD35-rsdAH10-uvrD3 showed almost optimal properties needed for the bio-orthogonal transcription (not interfering with the native biological processes).
Collapse
Affiliation(s)
- J Blumenstein
- Institute of Microbiology, CAS, v.v.i, Prague, Czech Republic
| | - H Dostálová
- Institute of Microbiology, CAS, v.v.i, Prague, Czech Republic
| | - L Rucká
- Institute of Microbiology, CAS, v.v.i, Prague, Czech Republic
| | - V Štěpánek
- Institute of Microbiology, CAS, v.v.i, Prague, Czech Republic
| | - T Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - J Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - M Pátek
- Institute of Microbiology, CAS, v.v.i, Prague, Czech Republic
| | - I Barvík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Bacon EE, Myers KS, Iruegas-López R, Banta AB, Place M, Ebersberger I, Peters JM. Physiological Roles of an Acinetobacter-specific σ Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602572. [PMID: 39026751 PMCID: PMC11257525 DOI: 10.1101/2024.07.08.602572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb;" however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA, and the uncharacterized small RNA, "sabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB", have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
| | - Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Meier D, Rauch C, Wagner M, Klemm P, Blumenkamp P, Müller R, Ellenberger E, Karia KM, Vecchione S, Serrania J, Lechner M, Fritz G, Goesmann A, Becker A. A MoClo-Compatible Toolbox of ECF Sigma Factor-Based Regulatory Switches for Proteobacterial Chassis. BIODESIGN RESEARCH 2024; 6:0025. [PMID: 38384496 PMCID: PMC10880074 DOI: 10.34133/bdr.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024] Open
Abstract
The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.
Collapse
Affiliation(s)
- Doreen Meier
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Christian Rauch
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Raphael Müller
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Eric Ellenberger
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Kinnari M. Karia
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Stefano Vecchione
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Georg Fritz
- The University of Western Australia, School of Molecular Sciences, Perth, Australia
| | - Alexander Goesmann
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Pospíšil J, Schwarz M, Ziková A, Vítovská D, Hradilová M, Kolář M, Křenková A, Hubálek M, Krásný L, Vohradský J. σ E of Streptomyces coelicolor can function both as a direct activator or repressor of transcription. Commun Biol 2024; 7:46. [PMID: 38184746 PMCID: PMC10771440 DOI: 10.1038/s42003-023-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
σ factors are considered as positive regulators of gene expression. Here we reveal the opposite, inhibitory role of these proteins. We used a combination of molecular biology methods and computational modeling to analyze the regulatory activity of the extracytoplasmic σE factor from Streptomyces coelicolor. The direct activator/repressor function of σE was then explored by experimental analysis of selected promoter regions in vivo. Additionally, the σE interactome was defined. Taken together, the results characterize σE, its regulation, regulon, and suggest its direct inhibitory function (as a repressor) in gene expression, a phenomenon that may be common also to other σ factors and organisms.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alice Ziková
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
5
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
6
|
Zeng X, Hinenoya A, Guan Z, Xu F, Lin J. Critical role of the RpoE stress response pathway in polymyxin resistance of Escherichia coli. J Antimicrob Chemother 2023; 78:732-746. [PMID: 36658759 PMCID: PMC10396327 DOI: 10.1093/jac/dkad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Polymyxins, including colistin, are the drugs of last resort to treat MDR bacterial infections in humans. In-depth understanding of the molecular basis and regulation of polymyxin resistance would provide new therapeutic opportunities to combat increasing polymyxin resistance. Here we aimed to identify novel targets that are crucial for polymyxin resistance using Escherichia coli BL21(DE3), a unique colistin-resistant model strain. METHODS BL21(DE3) was subjected to random transposon mutagenesis for screening colistin-susceptible mutants. The insertion sites of desired mutants were mapped; the key genes of interest were also inactivated in different strains to examine functional conservation. Specific genes in the known PmrAB and PhoPQ regulatory network were inactivated to examine crosstalk among different pathways. Lipid A species and membrane phospholipids were analysed by normal phase LC/MS. RESULTS Among eight mutants with increased susceptibility to colistin, five mutants contained different mutations in three genes (rseP, degS and surA) that belong to the RpoE stress response pathway. Inactivation of rpoE, pmrB, eptA or pmrD led to significantly increased susceptibility to colistin; however, inactivation of phoQ or eptB did not change colistin MIC. RpoE mutation in different E. coli and Salmonella resistant strains all led to significant reduction in colistin MIC (16-32-fold). Inactivation of rpoE did not change the lipid A profile but significantly altered the phospholipid profile. CONCLUSIONS Inactivation of the important members of the RpoE regulon in polymyxin-resistant strains led to a drastic reduction in polymyxin MIC and an increase of lysophospholipids with no change in lipid A modifications.
Collapse
Affiliation(s)
- Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Atsushi Hinenoya
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Fuzhou Xu
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Strecker J, Demircioglu FE, Li D, Faure G, Wilkinson ME, Gootenberg JS, Abudayyeh OO, Nishimasu H, Macrae RK, Zhang F. RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science 2022; 378:874-881. [PMID: 36423276 PMCID: PMC10028731 DOI: 10.1126/science.add7450] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In prokaryotes, CRISPR-Cas systems provide adaptive immune responses against foreign genetic elements through RNA-guided nuclease activity. Recently, additional genes with non-nuclease functions have been found in genetic association with CRISPR systems, suggesting that there may be other RNA-guided non-nucleolytic enzymes. One such gene from Desulfonema ishimotonii encodes the TPR-CHAT protease Csx29, which is associated with the CRISPR effector Cas7-11. Here, we demonstrate that this CRISPR-associated protease (CASP) exhibits programmable RNA-activated endopeptidase activity against a sigma factor inhibitor to regulate a transcriptional response. Cryo-electron microscopy of an active and substrate-bound CASP complex reveals an allosteric activation mechanism that reorganizes Csx29 catalytic residues upon target RNA binding. This work reveals an RNA-guided function in nature that can be leveraged for RNA-sensing applications in vitro and in human cells.
Collapse
Affiliation(s)
- Jonathan Strecker
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
| | - F. Esra Demircioglu
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
| | - David Li
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guilhem Faure
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Max E. Wilkinson
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
| | | | | | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Kyoto 600-8411, Japan
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
- Department of Biological Engineering, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. Gene 2022; 839:146734. [PMID: 35835406 DOI: 10.1016/j.gene.2022.146734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The gram-negative bacteria Porphyromonas gingivalis (PG) is the most prevalent cause of periodontal diseases and multidrug-resistant (MDR) infections. Periodontitis and MDR infections are severe due to PG's ability to efflux antimicrobial and virulence factors. This gives rise to colonisation, biofilm development, evasion, and modulation of the host defence system. Despite extensive studies on the MDR efflux pump in other pathogens, little is known about the efflux pump and its association with the virulence factor in PG. Prolonged infection of PG leads to complete loss of teeth and other systemic diseases. This necessitates the development of new therapeutic interventions to prevent and control MDR. OBJECTIVE The study aims to identify the most indispensable proteins that regulate both resistance and virulence in PG, which could therefore be used as a target to fight against the MDR threat to antibiotics. METHODS We have adopted a hierarchical network-based approach to construct a protein interaction network. Firstly, individual networks of four major efflux pump proteins and two virulence regulatory proteins were constructed, followed by integrating them into one. The relationship between proteins was investigated using a combination of centrality scores, k-core network decomposition, and functional annotation, to computationally identify the indispensable proteins. RESULTS Our study identified four topologically significant genes, PG_0538, PG_0539, PG_0285, and PG_1797, as potential pharmacological targets. PG_0539 and PG_1797 were identified to have significant associations between the efflux pump and virulence genes. This type of underpinning research may help in narrowing the drug spectrum used for treating periodontal diseases, and may also be exploited to look into antibiotic resistance and pathogenicity in bacteria other than PG.
Collapse
|
9
|
Novel switchable ECF sigma factor transcription system for improving thaxtomin A production in Streptomyces. Synth Syst Biotechnol 2022; 7:972-981. [PMID: 35756964 PMCID: PMC9194655 DOI: 10.1016/j.synbio.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
The application of the valuable natural product thaxtomin A, a potent bioherbicide from the potato scab pathogenic Streptomyces strains, has been greatly hindered by the low yields from its native producers. Here, we developed an orthogonal transcription system, leveraging extra-cytoplasmic function (ECF) sigma (σ) factor 17 (ECF17) and its cognate promoter Pecf17, to express the thaxtomin gene cluster and improve the production of thaxtomin A. The minimal Pecf17 promoter was determined, and a Pecf17 promoter library with a wide range of strengths was constructed. Furthermore, a cumate inducible system was developed for precise temporal control of the ECF17 transcription system in S. venezuelae ISP5230. Theoretically, the switchable ECF17 transcription system could reduce the unwanted influences from host and alleviate the burdens introduced by overexpression of heterologous genes. The yield of thaxtomin A was significantly improved to 202.1 ± 15.3 μ g/mL using the switchable ECF17 transcription system for heterologous expression of the thaxtomin gene cluster in S. venezuelae ISP5230. Besides, the applicability of this transcription system was also tested in Streptomyces albus J1074, and the titer of thaxtomin A was raised to as high as 239.3 ± 30.6 μg/mL. Therefore, the inducible ECF17 transcription system could serve as a complement of the generally used transcription systems based on strong native constitutive promoters and housekeeping σ factors for the heterologous expression of valuable products in diverse Streptomyces hosts.
Collapse
|
10
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
11
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
12
|
Jeong Y, Hong SJ, Cho SH, Yoon S, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338. Front Microbiol 2021; 12:667450. [PMID: 34054774 PMCID: PMC8155712 DOI: 10.3389/fmicb.2021.667450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are considered as promising microbial cell factories producing a wide array of bio-products. Among them, Synechocystis sp. PCC 7338 has the advantage of growing in seawater, rather than requiring arable land or freshwater. Nonetheless, how this marine cyanobacterium grows under the high salt stress condition remains unknown. Here, we determined its complete genome sequence with the embedded regulatory elements and analyzed the transcriptional changes in response to a high-salt environment. Complete genome sequencing revealed a 3.70 mega base pair genome and three plasmids with a total of 3,589 genes annotated. Differential RNA-seq and Term-seq data aligned to the complete genome provided genome-wide information on genetic regulatory elements, including promoters, ribosome-binding sites, 5'- and 3'-untranslated regions, and terminators. Comparison with freshwater Synechocystis species revealed Synechocystis sp. PCC 7338 genome encodes additional genes, whose functions are related to ion channels to facilitate the adaptation to high salt and high osmotic pressure. Furthermore, a ferric uptake regulator binding motif was found in regulatory regions of various genes including SigF and the genes involved in energy metabolism, suggesting the iron-regulatory network is connected to not only the iron acquisition, but also response to high salt stress and photosynthesis. In addition, the transcriptomics analysis demonstrated a cyclic electron transport through photosystem I was actively used by the strain to satisfy the demand for ATP under high-salt environment. Our comprehensive analyses provide pivotal information to elucidate the genomic functions and regulations in Synechocystis sp. PCC 7338.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seonghoon Yoon
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon, South Korea
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
13
|
de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. Int J Mol Sci 2021; 22:ijms22083900. [PMID: 33918849 PMCID: PMC8103513 DOI: 10.3390/ijms22083900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria.
Collapse
|
14
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|