1
|
Amil AF, Albesa-González A, Verschure PFMJ. Theta oscillations optimize a speed-precision trade-off in phase coding neurons. PLoS Comput Biol 2024; 20:e1012628. [PMID: 39621800 PMCID: PMC11637358 DOI: 10.1371/journal.pcbi.1012628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Theta-band oscillations (3-8 Hz) in the mammalian hippocampus organize the temporal structure of cortical inputs, resulting in a phase code that enables rhythmic input sampling for episodic memory formation and spatial navigation. However, it remains unclear what evolutionary pressures might have driven the selection of theta over higher-frequency bands that could potentially provide increased input sampling resolution. Here, we address this question by introducing a theoretical framework that combines the efficient coding and neural oscillatory sampling hypotheses, focusing on the information rate (bits/s) of phase coding neurons. We demonstrate that physiologically realistic noise levels create a trade-off between the speed of input sampling, determined by oscillation frequency, and encoding precision in rodent hippocampal neurons. This speed-precision trade-off results in a maximum information rate of ∼1-2 bits/s within the theta frequency band, thus confining the optimal oscillation frequency to the low end of the spectrum. We also show that this framework accounts for key hippocampal features, such as the preservation of the theta band along the dorsoventral axis despite physiological gradients, and the modulation of theta frequency and amplitude by running speed. Extending the analysis beyond the hippocampus, we propose that theta oscillations could also support efficient stimulus encoding in the visual cortex and olfactory bulb. More broadly, our framework lays the foundation for studying how system features, such as noise, constrain the optimal sampling frequencies in both biological and artificial brains.
Collapse
Affiliation(s)
- Adrián F. Amil
- Donders Institute for Brain, Cognition and Behaviour–Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Paul F. M. J. Verschure
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC)–Universidad Miguel Hernández de Elche, Alicante, Spain
- Department of Health Psychology, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
2
|
Xie W, Wittig JH, Chapeton JI, El-Kalliny M, Jackson SN, Inati SK, Zaghloul KA. Neuronal sequences in population bursts encode information in human cortex. Nature 2024; 635:935-942. [PMID: 39415012 DOI: 10.1038/s41586-024-08075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Neural coding has traditionally been examined through changes in firing rates and latencies in response to different stimuli1-5. However, populations of neurons can also exhibit transient bursts of spiking activity, wherein neurons fire in a specific temporal order or sequence6-8. The human brain may utilize these neuronal sequences within population bursts to efficiently represent information9-12, thereby complementing the well-known neural code based on spike rate or latency. Here we examined this possibility by recording the spiking activity of populations of single units in the human anterior temporal lobe as eight participants performed a visual categorization task. We find that population spiking activity organizes into bursts during the task. The temporal order of spiking across the activated units within each burst varies across stimulus categories, creating unique stereotypical sequences for individual categories as well as for individual exemplars within a category. The information conveyed by the temporal order of spiking activity is separable from and complements the information conveyed by the units' spike rates or latencies following stimulus onset. Collectively, our data provide evidence that the human brain contains a complementary code based on the neuronal sequence within bursts of population spiking to represent information.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
- Department of Psychology, University of Maryland, College Park, MD, USA.
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Mostafa El-Kalliny
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Samantha N Jackson
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Phan AT, Xie W, Chapeton JI, Inati SK, Zaghloul KA. Dynamic patterns of functional connectivity in the human brain underlie individual memory formation. Nat Commun 2024; 15:8969. [PMID: 39419972 PMCID: PMC11487248 DOI: 10.1038/s41467-024-52744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Remembering our everyday experiences involves dynamically coordinating information distributed across different brain regions. Investigating how momentary fluctuations in connectivity in the brain are relevant for episodic memory formation, however, has been challenging. Here we leverage the high temporal precision of intracranial EEG to examine sub-second changes in functional connectivity in the human brain as 20 participants perform a paired associates verbal memory task. We first identify potential functional connections by selecting electrode pairs across the neocortex that exhibit strong correlations with a consistent time delay across random recording segments. We then find that successful memory formation during the task involves dynamic sub-second changes in functional connectivity that are specific to each word pair. These patterns of dynamic changes are reinstated when participants successfully retrieve the word pairs from memory. Therefore, our data provide direct evidence that specific patterns of dynamic changes in human brain connectivity are associated with successful memory formation.
Collapse
Affiliation(s)
- Audrey T Phan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Weizhen Xie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Pacheco-Estefan D, Fellner MC, Kunz L, Zhang H, Reinacher P, Roy C, Brandt A, Schulze-Bonhage A, Yang L, Wang S, Liu J, Xue G, Axmacher N. Maintenance and transformation of representational formats during working memory prioritization. Nat Commun 2024; 15:8234. [PMID: 39300141 DOI: 10.1038/s41467-024-52541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Visual working memory depends on both material-specific brain areas in the ventral visual stream (VVS) that support the maintenance of stimulus representations and on regions in the prefrontal cortex (PFC) that control these representations. How executive control prioritizes working memory contents and whether this affects their representational formats remains an open question, however. Here, we analyzed intracranial EEG (iEEG) recordings in epilepsy patients with electrodes in VVS and PFC who performed a multi-item working memory task involving a retro-cue. We employed Representational Similarity Analysis (RSA) with various Deep Neural Network (DNN) architectures to investigate the representational format of prioritized VWM content. While recurrent DNN representations matched PFC representations in the beta band (15-29 Hz) following the retro-cue, they corresponded to VVS representations in a lower frequency range (3-14 Hz) towards the end of the maintenance period. Our findings highlight the distinct coding schemes and representational formats of prioritized content in VVS and PFC.
Collapse
Affiliation(s)
- Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany.
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Peter Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Charlotte Roy
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Linglin Yang
- Department of Psychiatry, Second Affiliated Hospital, School of medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy center, Second Affiliated Hospital, School of medicine, Zhejiang University, Hangzhou, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
5
|
Ku SP, Atucha E, Alavi N, Mulla-Osman H, Kayumova R, Yoshida M, Csicsvari J, Sauvage MM. Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance. Cell Rep 2024; 43:114276. [PMID: 38814781 DOI: 10.1016/j.celrep.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
How the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented. In addition, decoding analyses revealed that only population cell firing of proximal CA3 together with that of distal CA1 can predict performance at test in the present non-spatial task. Overall, our work demonstrates an important role for the synchronization of CA3 neuronal activity with CA1 theta oscillations during memory testing.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany.
| | - Erika Atucha
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Nico Alavi
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Halla Mulla-Osman
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Rukhshona Kayumova
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jozsef Csicsvari
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Magdalena M Sauvage
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
6
|
Grob AM, Heinbockel H, Milivojevic B, Doeller CF, Schwabe L. Causal role of the angular gyrus in insight-driven memory reconfiguration. eLife 2024; 12:RP91033. [PMID: 38407185 PMCID: PMC10942625 DOI: 10.7554/elife.91033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations. To test this hypothesis, participants received continuous theta burst stimulation (cTBS) over the left angular gyrus or sham stimulation before gaining insight into the relationship between previously separate life-like animated events in a narrative-insight task. During this task, participants also underwent EEG recording and their memory for linked and non-linked events was assessed shortly thereafter. Our results show that cTBS to the angular gyrus decreased memory for the linking events and reduced the memory advantage for linked relative to non-linked events. At the neural level, cTBS targeting the angular gyrus reduced centro-temporal coupling with frontal regions and abolished insight-induced neural representational changes for events linked via imagination, indicating impaired memory reconfiguration. Further, the cTBS group showed representational changes for non-linked events that resembled the patterns observed in the sham group for the linked events, suggesting failed pruning of the narrative in memory. Together, our findings demonstrate a causal role of the left angular gyrus in insight-related memory reconfigurations.
Collapse
Affiliation(s)
- Anna-Maria Grob
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| | - Hendrik Heinbockel
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| | - Branka Milivojevic
- Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Max-Planck-Insitute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute of Psychology, Leipzig UniversityLeipzigGermany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| |
Collapse
|
7
|
Noguchi Y. Harmonic memory signals in the human cerebral cortex induced by semantic relatedness of words. NPJ SCIENCE OF LEARNING 2024; 9:6. [PMID: 38355685 PMCID: PMC10866900 DOI: 10.1038/s41539-024-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
When we memorize multiple words simultaneously, semantic relatedness among those words assists memory. For example, the information about "apple", "banana," and "orange" will be connected via a common concept of "fruits" and become easy to retain and recall. Neural mechanisms underlying this semantic integration in verbal working memory remain unclear. Here I used electroencephalography (EEG) and investigated neural signals when healthy human participants memorized five nouns semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8-30 Hz) during the retention period was found to be lower in NonSem than Sem trials, indicating that memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic feature produces harmonic brain responses through a resonance or integration (sharing) of the oscillatory signals.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
8
|
Zheng XY, Hebart MN, Grill F, Dolan RJ, Doeller CF, Cools R, Garvert MM. Parallel cognitive maps for multiple knowledge structures in the hippocampal formation. Cereb Cortex 2024; 34:bhad485. [PMID: 38204296 PMCID: PMC10839836 DOI: 10.1093/cercor/bhad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.
Collapse
Affiliation(s)
- Xiaochen Y Zheng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
| | - Martin N Hebart
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Department of Medicine, Justus Liebig University, 35390, Giessen, Germany
| | - Filip Grill
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Neurology, 6525 GA, Nijmegen, the Netherlands
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Christian F Doeller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU, 7491, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, 04109, Leipzig, Germany
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Psychiatry, 6525 GA, Nijmegen, the Netherlands
| | - Mona M Garvert
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Cheng S, Ding Z, Chen C, Sun W, Jiang T, Liu X, Zhang M. The effect of choice on memory: The role of theta oscillations. Psychophysiology 2023; 60:e14390. [PMID: 37455343 DOI: 10.1111/psyp.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
People value the opportunity to exercise control over the environment or make their own choices. Recent studies have revealed that simply having the opportunity to make choices can facilitate memory performance, suggesting an interaction between reward (due to choice making) and memory systems. However, little is known about the electrophysiological basis of choice-related memory. In the current study, we used scalp electroencephalography combined with a choice encoding task to examine the role of theta oscillations (which have been widely connected to reward and memory processing) in choice-related memory formation. The encoding task had two conditions. In the choice condition, participants were asked to choose between two occluded memoranda by themselves, whereas in the fixed condition, the decision was made by the computer. Behavioral results showed the choice effect, with better performance in the choice condition than the fixed condition on the recognition test given after a 24-h delay. Increases in theta power during an early latency of encoding period predicted successful memory formation in the choice condition, but not in the fixed condition. Furthermore, decreases in theta power during a late latency predicted successful memory formation in both the fixed and the choice conditions. Finally, we observed increased theta power in the choice condition compared to the fixed condition during an early latency of encoding period and decreased theta power in the choice condition compared to the fixed condition during a late latency. Our results suggest that theta oscillations play a significant role in choice-related memory formation.
Collapse
Affiliation(s)
- Si Cheng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhuolei Ding
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Wenxiang Sun
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Ting Jiang
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
10
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
11
|
Fontes-Dutra M, Righes Marafiga J, Santos-Terra J, Deckmann I, Brum Schwingel G, Rabelo B, Kazmierzak de Moraes R, Rockenbach M, Vendramin Pasquetti M, Gottfried C, Calcagnotto ME. GABAergic synaptic transmission and cortical oscillation patterns in the primary somatosensory area of a valproic acid rat model of autism spectrum disorder. Eur J Neurosci 2023; 57:527-546. [PMID: 36504470 DOI: 10.1111/ejn.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction associated with repetitive or stereotyped behaviour. Prenatal valproic acid (VPA) exposure in rodents is a commonly used model of ASD. Resveratrol (RSV) has been shown to prevent interneuronal and behavioural impairments in the VPA model. We investigated the effects of prenatal VPA exposure and RSV on the GABAergic synaptic transmission, brain oscillations and on the genic expression of interneuron-associated transcription factor LHX6 in the primary somatosensory area (PSSA). Prenatal VPA exposure decreased the sIPSC and mIPSC frequencies and the sIPSC decay kinetics onto layers 4/5 pyramidal cells of PSSA. About 40% of VPA animals exhibited absence-like spike-wave discharge (SWD) events associated with behaviour arrest and increased power spectrum density of delta, beta and gamma cortical oscillations. VPA animals had reduced LHX6 expression in PSSA, but VPA animals treated with RSV had no changes on synaptic inhibition or LHX6 expression in the PSSA. SWD events associated with behaviour arrest and the abnormal increment of cortical oscillations were also absent in VPA animals treated with RSV. These findings provide new venues to investigate the role of both RSV and VPA in the pathophysiology of ASD and highlight the VPA animal model as an interesting tool to investigate pathways related to the aetiology and possible future therapies to this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Joseane Righes Marafiga
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Bruna Rabelo
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rafael Kazmierzak de Moraes
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marília Rockenbach
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Vendramin Pasquetti
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Sherman BE, Graves KN, Huberdeau DM, Quraishi IH, Damisah EC, Turk-Browne NB. Temporal Dynamics of Competition between Statistical Learning and Episodic Memory in Intracranial Recordings of Human Visual Cortex. J Neurosci 2022; 42:9053-9068. [PMID: 36344264 PMCID: PMC9732826 DOI: 10.1523/jneurosci.0708-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The function of long-term memory is not just to reminisce about the past, but also to make predictions that help us behave appropriately and efficiently in the future. This predictive function of memory provides a new perspective on the classic question from memory research of why we remember some things but not others. If prediction is a key outcome of memory, then the extent to which an item generates a prediction signifies that this information already exists in memory and need not be encoded. We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in visual cortex during a statistical learning task and link the strength of these predictions to subsequent episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of which contained regularities that allowed the category of the next scene to be predicted. We verified that statistical learning occurred using neural frequency tagging and measured category prediction with multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by predictive items that were subsequently forgotten. Such interference provides a mechanism by which prediction can regulate memory formation to prioritize encoding of information that could help learn new predictive relationships.SIGNIFICANCE STATEMENT When faced with a new experience, we are rarely at a loss for what to do. Rather, because many aspects of the world are stable over time, we rely on past experiences to generate expectations that guide behavior. Here we show that these expectations during a new experience come at the expense of memory for that experience. From intracranial recordings of visual cortex, we decoded what humans expected to see next in a series of photographs based on patterns of neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak expectations could help improve these expectations in future encounters.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - David M Huberdeau
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - Imran H Quraishi
- Department of Neurology, Yale University, 800 Howard Avenue, New Haven, CT 06519
| | - Eyiyemisi C Damisah
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, CT 06510
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
- Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510
| |
Collapse
|
13
|
Kerrén C, van Bree S, Griffiths BJ, Wimber M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 2022; 11:e80633. [PMID: 36394367 PMCID: PMC9671495 DOI: 10.7554/elife.80633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Competition between overlapping memories is considered one of the major causes of forgetting, and it is still unknown how the human brain resolves such mnemonic conflict. In the present magnetoencephalography (MEG) study, we empirically tested a computational model that leverages an oscillating inhibition algorithm to minimise overlap between memories. We used a proactive interference task, where a reminder word could be associated with either a single image (non-competitive condition) or two competing images, and participants were asked to always recall the most recently learned word-image association. Time-resolved pattern classifiers were trained to detect the reactivated content of target and competitor memories from MEG sensor patterns, and the timing of these neural reactivations was analysed relative to the phase of the dominant hippocampal 3 Hz theta oscillation. In line with our pre-registered hypotheses, target and competitor reactivations locked to different phases of the hippocampal theta rhythm after several repeated recalls. Participants who behaviourally experienced lower levels of interference also showed larger phase separation between the two overlapping memories. The findings provide evidence that the temporal segregation of memories, orchestrated by slow oscillations, plays a functional role in resolving mnemonic competition by separating and prioritising relevant memories under conditions of high interference.
Collapse
Affiliation(s)
- Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Benjamin J Griffiths
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
14
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
15
|
Bellmund JLS, Deuker L, Montijn ND, Doeller CF. Mnemonic construction and representation of temporal structure in the hippocampal formation. Nat Commun 2022; 13:3395. [PMID: 35739096 PMCID: PMC9226117 DOI: 10.1038/s41467-022-30984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
The hippocampal-entorhinal region supports memory for episodic details, such as temporal relations of sequential events, and mnemonic constructions combining experiences for inferential reasoning. However, it is unclear whether hippocampal event memories reflect temporal relations derived from mnemonic constructions, event order, or elapsing time, and whether these sequence representations generalize temporal relations across similar sequences. Here, participants mnemonically constructed times of events from multiple sequences using infrequent cues and their experience of passing time. After learning, event representations in the anterior hippocampus reflected temporal relations based on constructed times. Temporal relations were generalized across sequences, revealing distinct representational formats for events from the same or different sequences. Structural knowledge about time patterns, abstracted from different sequences, biased the construction of specific event times. These findings demonstrate that mnemonic construction and the generalization of relational knowledge combine in the hippocampus, consistent with the simulation of scenarios from episodic details and structural knowledge.
Collapse
Affiliation(s)
- Jacob L S Bellmund
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lorena Deuker
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Nicole D Montijn
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway.
- Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany.
| |
Collapse
|
16
|
Escaping from the IIT Munchausen method: Re-establishing the scientific method in the study of consciousness. Behav Brain Sci 2022; 45:e63. [PMID: 35319419 DOI: 10.1017/s0140525x21002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integrated information theory (IIT) is an example of "ironic science" and obstructs the scientific study of consciousness. By confusing the ontological status of a method to quantify network complexity with that of a theory of consciousness, IIT has to square the circle and spirals toward its panpsychism conclusion. I analyze the consequences of this fallacy and suggest how the study of consciousness can be brought back into the realm of rational, empirical science.
Collapse
|
17
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Ashmaig O, Hamilton LS, Modur P, Buchanan RJ, Preston AR, Watrous AJ. A Platform for Cognitive Monitoring of Neurosurgical Patients During Hospitalization. Front Hum Neurosci 2021; 15:726998. [PMID: 34880738 PMCID: PMC8645698 DOI: 10.3389/fnhum.2021.726998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Intracranial recordings in epilepsy patients are increasingly utilized to gain insight into the electrophysiological mechanisms of human cognition. There are currently several practical limitations to conducting research with these patients, including patient and researcher availability and the cognitive abilities of patients, which limit the amount of task-related data that can be collected. Prior studies have synchronized clinical audio, video, and neural recordings to understand naturalistic behaviors, but these recordings are centered on the patient to understand their seizure semiology and thus do not capture and synchronize audiovisual stimuli experienced by patients. Here, we describe a platform for cognitive monitoring of neurosurgical patients during their hospitalization that benefits both patients and researchers. We provide the full specifications for this system and describe some example use cases in perception, memory, and sleep research. We provide results obtained from a patient passively watching TV as proof-of-principle for the naturalistic study of cognition. Our system opens up new avenues to collect more data per patient using real-world behaviors, affording new possibilities to conduct longitudinal studies of the electrophysiological basis of human cognition under naturalistic conditions.
Collapse
Affiliation(s)
- Omer Ashmaig
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Liberty S. Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States
| | - Pradeep Modur
- Seton Brain and Spine Institute, Division of Neurosurgery, Austin, TX, United States
| | - Robert J. Buchanan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Seton Brain and Spine Institute, Division of Neurosurgery, Austin, TX, United States
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Alison R. Preston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Andrew J. Watrous
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Kragel JE, Schuele S, VanHaerents S, Rosenow JM, Voss JL. Rapid coordination of effective learning by the human hippocampus. SCIENCE ADVANCES 2021; 7:7/25/eabf7144. [PMID: 34144985 PMCID: PMC8213228 DOI: 10.1126/sciadv.abf7144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Although the human hippocampus is necessary for long-term memory, controversial findings suggest that it may also support short-term memory in the service of guiding effective behaviors during learning. We tested the counterintuitive theory that the hippocampus contributes to long-term memory through remarkably short-term processing, as reflected in eye movements during scene encoding. While viewing scenes for the first time, short-term retrieval operative within the episode over only hundreds of milliseconds was indicated by a specific eye-movement pattern, which was effective in that it enhanced spatiotemporal memory formation. This viewing pattern was predicted by hippocampal theta oscillations recorded from depth electrodes and by shifts toward top-down influence of hippocampal theta on activity within visual perception and attention networks. The hippocampus thus supports short-term memory processing that coordinates behavior in the service of effective spatiotemporal learning.
Collapse
Affiliation(s)
- James E Kragel
- Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephan Schuele
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen VanHaerents
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joel L Voss
- Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|