1
|
Wilson CF, Marcq E, Gillmann C, Widemann T, Korablev O, Mueller NT, Lefèvre M, Rimmer PB, Robert S, Zolotov MY. Possible Effects of Volcanic Eruptions on the Modern Atmosphere of Venus. SPACE SCIENCE REVIEWS 2024; 220:31. [PMID: 38585189 PMCID: PMC10997549 DOI: 10.1007/s11214-024-01054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024]
Abstract
This work reviews possible signatures and potential detectability of present-day volcanically emitted material in the atmosphere of Venus. We first discuss the expected composition of volcanic gases at present time, addressing how this is related to mantle composition and atmospheric pressure. Sulfur dioxide, often used as a marker of volcanic activity in Earth's atmosphere, has been observed since late 1970s to exhibit variability at the Venus' cloud tops at time scales from hours to decades; however, this variability may be associated with solely atmospheric processes. Water vapor is identified as a particularly valuable tracer for volcanic plumes because it can be mapped from orbit at three different tropospheric altitude ranges, and because of its apparent low background variability. We note that volcanic gas plumes could be either enhanced or depleted in water vapor compared to the background atmosphere, depending on magmatic volatile composition. Non-gaseous components of volcanic plumes, such as ash grains and/or cloud aerosol particles, are another investigation target of orbital and in situ measurements. We discuss expectations of in situ and remote measurements of volcanic plumes in the atmosphere with particular focus on the upcoming DAVINCI, EnVision and VERITAS missions, as well as possible future missions.
Collapse
Affiliation(s)
- Colin F. Wilson
- European Space Agency, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
- Physics Dept, Oxford University, Oxford, OX1 3PU UK
| | - Emmanuel Marcq
- LATMOS/IPSL, UVSQ Sorbonne Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Cédric Gillmann
- Institut für Geophysik, Geophysical Fluid Dynamics, ETH Zurich, Sonneggstraße 5, 8092 Zürich, Switzerland
| | - Thomas Widemann
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
- Université Paris-Saclay, UVSQ, DYPAC, 78000 Versailles, France
| | - Oleg Korablev
- Space Research Institute (IKI), Russian Academy of Sciences, Moscow, 117997 Russia
| | - Nils T. Mueller
- Institute for Planetary Research, DLR, Rutherfordstraße 2, 12489 Berlin, Germany
- Institute of Geosciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
| | - Maxence Lefèvre
- LATMOS/IPSL, UVSQ Sorbonne Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| | - Séverine Robert
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - Mikhail Y. Zolotov
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 USA
| |
Collapse
|
2
|
Mráziková K, Knížek A, Saeidfirozeh H, Petera L, Civiš S, Saija F, Cassone G, Rimmer PB, Ferus M. A Novel Abiotic Pathway for Phosphine Synthesis over Acidic Dust in Venus' Atmosphere. ASTROBIOLOGY 2024; 24:407-422. [PMID: 38603526 DOI: 10.1089/ast.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.
Collapse
Affiliation(s)
- Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Knížek
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Homa Saeidfirozeh
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukáš Petera
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Franz Saija
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Paul B Rimmer
- University of Cambridge, Cavendish Astrophysics, Cambridge, United Kingdom
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Petkowski JJ, Seager S, Grinspoon DH, Bains W, Ranjan S, Rimmer PB, Buchanan WP, Agrawal R, Mogul R, Carr CE. Astrobiological Potential of Venus Atmosphere Chemical Anomalies and Other Unexplained Cloud Properties. ASTROBIOLOGY 2024; 24:343-370. [PMID: 38452176 DOI: 10.1089/ast.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Mazowieckie, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Sukrit Ranjan
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Weston P Buchanan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, USA
| | - Rachana Agrawal
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rakesh Mogul
- California Polytechnic University, Pomona, California, USA
| | - Christopher E Carr
- School of Aerospace Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Nikitin AV, Campargue A, Protasevich AE, Rey M, Sung K, Tyuterev VG. Analysis of experimental spectra of phosphine in the Tetradecad range near 2.3 μm using ab initio calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122896. [PMID: 37331254 DOI: 10.1016/j.saa.2023.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Due to its major interest for the chemistry of planetary atmospheres and exobiology, accurate spectroscopy data of phosphine are required for the search of signatures of this molecule in astronomical observations. In this work, high resolution infrared laboratory spectra of phosphine were analyzed for the first time in the full Tetradecad region (3769-4763 cm-1) involving 26 rotationally resolved bands. Overall, 3242 lines were assigned in spectra previously recorded by Fourier transform spectroscopy at temperatures 200 K and 296 K, using a combined theoretical model based on ab initio calculations. The total nuclear motion Hamiltonian of PH3 including ab initio potential energy surface, was reduced to an effective Hamiltonian using the high-order contact transformation method adapted to vibrational polyads of the AB3 symmetric top molecules, followed by empirical optimization of the parameters. At this step, the experimental line positions were reproduced with a standard deviation of 0.0026 cm-1 that provided unambiguous identification of observed transitions. The effective dipole transition moments of the bands were obtained by fitting to the intensities obtained from variational calculations using the ab initio dipole moment surface. The assigned lines were used to newly determine 1609 experimental vibration-rotational levels up to Jmax = 18 with energy in the range 3896-6037 cm-1 that represents significant extension towards higher energies compared to previous works. Transitions for all 26 sublevels of the Tetradecad were identified but with noticeably fewer transitions for fourfold excited bands because of their weaker intensity. At the final step, pressure-broadened half widths were attached to each transition and a composite line list adopting ab initio intensities and empirical line positions corrected to the accuracy of about 0.001 cm-1 for strong and medium transitions was validated against experimental spectra available in the literature.
Collapse
Affiliation(s)
- A V Nikitin
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia.
| | - A Campargue
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - A E Protasevich
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia
| | - M Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - K Sung
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Vl G Tyuterev
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia
| |
Collapse
|
5
|
Foote S, Sinhadc P, Mathis C, Walker SI. False Positives and the Challenge of Testing the Alien Hypothesis. ASTROBIOLOGY 2023; 23:1189-1201. [PMID: 37962842 DOI: 10.1089/ast.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The origin of life and the detection of alien life have historically been treated as separate scientific research problems. However, they are not strictly independent. Here, we discuss the need for a better integration of the sciences of life detection and origins of life. Framing these dual problems within the formalism of Bayesian hypothesis testing, we demonstrate via simple examples how high confidence in life detection claims require either (1) a strong prior hypothesis about the existence of life in a particular alien environment, or conversely, (2) signatures of life that are not susceptible to false positives. As a case study, we discuss the role of priors and hypothesis testing in recent results reporting potential detection of life in the venusian atmosphere and in the icy plumes of Enceladus. While many current leading biosignature candidates are subject to false positives because they are not definitive of life, our analyses demonstrate why it is necessary to shift focus to candidate signatures that are definitive. This indicates a necessity to develop methods that lack substantial false positives, by using observables for life that rely on prior hypotheses with strong theoretical and empirical support in identifying defining features of life. Abstract theories developed in pursuit of understanding universal features of life are more likely to be definitive and to apply to life-as-we-don't-know-it. We discuss Molecular Assembly theory as an example of such an observable which is applicable to life detection within the solar system. In the absence of alien examples these are best validated in origin of life experiments, substantiating the need for better integration between origins of life and biosignature science research communities. This leads to a conclusion that extraordinary claims in astrobiology (e.g., definitive detection of alien life) require extraordinary explanations, whereas the evidence itself could be quite ordinary.
Collapse
Affiliation(s)
- Searra Foote
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Pritvik Sinhadc
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Dubai College, Dubai, UAE
| | - Cole Mathis
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Sara Imari Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Lu B, Wang L, Jiang X, Rauhut G, Zeng X. Spectroscopic Identification of Diphosphene HPPH and Isomeric Diphosphinyldene PPH 2. Angew Chem Int Ed Engl 2023; 62:e202217353. [PMID: 36637338 DOI: 10.1002/anie.202217353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
The simplest diphosphene HPPH and isomeric diphosphinyldene PPH2 features prototype phosphorus-phosphorus multiple bonding properties that have been of long-standing interest in main-group chemistry. Herein, we report the observation of cis-HPPH, trans-HPPH, and PPH2 among the respective laser photolysis products of phosphine (PH3 ) and diphosphine (P2 H4 ) in solid N2 - and Ar-matrices at 10 K. The identification of these P2 H2 isomers with matrix-isolation IR and UV/Vis spectroscopy is supported by D-isotope labeling and the quantum chemical calculations at the CCSD(T)-F12a/cc-pVTZ-F12 level using configuration-selective vibrational configuration interaction theory (VCI). Bonding analyses suggest that the two conformers of HPPH contain standard PP double bonds, whereas, PPH2 resembles P2 in having partial PP triple bond due to the H2 P←P π bonding interaction.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Way MJ, Ostberg C, Foley BJ, Gillmann C, Höning D, Lammer H, O’Rourke J, Persson M, Plesa AC, Salvador A, Scherf M, Weller M. Synergies Between Venus & Exoplanetary Observations: Venus and Its Extrasolar Siblings. SPACE SCIENCE REVIEWS 2023; 219:13. [PMID: 36785654 PMCID: PMC9911515 DOI: 10.1007/s11214-023-00953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.
Collapse
Affiliation(s)
- M. J. Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA
- Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Colby Ostberg
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521 USA
| | - Bradford J. Foley
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Cedric Gillmann
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005 USA
| | - Dennis Höning
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Joseph O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Moa Persson
- Institut de Recherche en Astrophysique et Planétologie, Centre National de la Recherche Scientifique, Université Paul Sabatier – Toulouse III, Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Arnaud Salvador
- Department of Astronomy and Planetary Science, Northern Arizona University, Box 6010, Flagstaff, AZ 86011 USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, AZ USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
- Institute for Geodesy, Technical University, Graz, Austria
| | - Matthew Weller
- Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058 USA
| |
Collapse
|
8
|
Bains W, Petkowski JJ, Seager S, Ranjan S, Sousa-Silva C, Rimmer PB, Zhan Z, Greaves JS, Richards AMS. Venusian phosphine: a ‘wow!’ signal in chemistry? PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1998051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sukrit Ranjan
- Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, USA
- Department of Astronomy and Astrophysics, Northwestern University, Evanston, USA
- Blue Marble Space Institute of Science, Seattle, USA
| | | | - Paul B. Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane S. Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Anita M. S. Richards
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Truong N, Lunine JI. Reply to Bains et al.: On the plausibility of crustal phosphides as the source of Venusian phosphine. Proc Natl Acad Sci U S A 2022; 119:e2122571119. [PMID: 35131935 PMCID: PMC8851559 DOI: 10.1073/pnas.2122571119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ngoc Truong
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853;
- Carl Sagan Institute, Cornell University, Ithaca, NY 14853
| | - Jonathan I Lunine
- Carl Sagan Institute, Cornell University, Ithaca, NY 14853;
- Department of Astronomy, Cornell University, Ithaca, NY 14853
| |
Collapse
|
10
|
Only extraordinary volcanism can explain the presence of parts per billion phosphine on Venus. Proc Natl Acad Sci U S A 2022; 119:2121702119. [PMID: 35131934 PMCID: PMC8851506 DOI: 10.1073/pnas.2121702119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Abstract
The initial reports of the presence of phosphine in the cloud decks of Venus have led to the suggestion that volcanism is the source of phosphine, through volcanic phosphides ejected into the clouds. Here, we examine the idea that mantle plume volcanism, bringing material from the deep mantle to the surface, could generate observed amounts of phosphine through the interaction of explosively erupted phosphide with sulfuric acid clouds. The direct eruption of deep mantle phosphide is unphysical, but a shallower material could contain traces of phosphide, and could be erupted to the surface. The explosive eruption that efficiently transports material to the clouds would require ocean:magma interactions or the subduction of a hydrated oceanic crust, neither of which occur on modern Venus. The transport of the erupted material to altitudes coinciding with the observations of phosphine is consequently very inefficient. Using the model proposed by Truong and Lunine as a base case, we estimate that an eruption volume of at least 21,600 km3/year would be required to explain the presence of 1 ppb phosphine in the clouds. This is greater than any historical terrestrial eruption rate, and would have several detectable consequences for remote and in situ observations to confirm. More realistic lithospheric mineralogy, volcano mechanics or atmospheric photochemistry require even more volcanism.
Collapse
|
12
|
Bains W, Petkowski JJ, Seager S, Ranjan S, Sousa-Silva C, Rimmer PB, Zhan Z, Greaves JS, Richards AMS. Phosphine on Venus Cannot Be Explained by Conventional Processes. ASTROBIOLOGY 2021; 21:1277-1304. [PMID: 34283644 DOI: 10.1089/ast.2020.2352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The recent candidate detection of ∼1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modeled for Venus' atmosphere before, and our work represents the first attempt to model phosphorus species in the venusian atmosphere. We thoroughly explore the potential pathways of formation of phosphine in a venusian environment, including in the planet's atmosphere, cloud and haze layers, surface, and subsurface. We investigate gas reactions, geochemical reactions, photochemistry, and other nonequilibrium processes. None of these potential phosphine production pathways is sufficient to explain the presence of ppb phosphine levels on Venus. If PH3's presence in Venus' atmosphere is confirmed, it therefore is highly likely to be the result of a process not previously considered plausible for venusian conditions. The process could be unknown geochemistry, photochemistry, or even aerial microbial life, given that on Earth phosphine is exclusively associated with anthropogenic and biological sources. The detection of phosphine adds to the complexity of chemical processes in the venusian environment and motivates in situ follow-up sampling missions to Venus. Our analysis provides a template for investigation of phosphine as a biosignature on other worlds.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Clara Sousa-Silva
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane S Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Anita M S Richards
- Department of Physics and Astronomy, Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Omran A, Oze C, Jackson B, Mehta C, Barge LM, Bada J, Pasek MA. Phosphine Generation Pathways on Rocky Planets. ASTROBIOLOGY 2021; 21:1264-1276. [PMID: 34551269 DOI: 10.1089/ast.2021.0034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The possibility of life in the venusian clouds was proposed in the 1960s, and recently this hypothesis has been revived with the potential detection of phosphine (PH3) in Venus' atmosphere. These observations may have detected ∼5-20 ppb phosphine on Venus (Greaves et al., 2020), which raises questions about venusian atmospheric/geochemical processes and suggests that this phosphine could possibly be generated by biological processes. In such a claim, it is essential to understand the abiotic phosphorus chemistry that may occur under Venus-relevant conditions, particularly those processes that may result in phosphine generation. Here, we discuss two related abiotic routes for phosphine generation within the atmosphere of Venus. Based on our assessment, corrosion of large impactors as they ablate near Venus' cloud layer, and the presence of reduced phosphorus compounds in the subcloud layer could result in production of phosphine and may explain the phosphine detected in Venus' atmosphere or on other rocky planets. We end on a cautionary note: although there may be life in the clouds of Venus, the detection of a simple, single gas, phosphine, is likely not a decisive indicator.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Christopher Oze
- Geology Department, Occidental College, Los Angeles, California, USA
| | - Brian Jackson
- Department of Physics, Boise State University, Boise, Idaho, USA
| | - Chris Mehta
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jeffrey Bada
- Scripps Institution of Oceanography Department, University of California at San Diego, La Jolla, California, USA
| | - Matthew A Pasek
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|