1
|
Sun J, Tian ZY, Liu J, Wan C, Dai C, Liu Z, Xing Y, Wu Y, Hou Z, Han W, Yin F, Ye Y, Li Z. Intramolecular CH⋯π attraction mediated conformational polymorphism of constrained helical peptides. Chem Sci 2024:d4sc02545h. [PMID: 39149221 PMCID: PMC11322895 DOI: 10.1039/d4sc02545h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
In nature, biochemical processes depend on polymorphism, a phenomenon by which discrete biomolecules can adopt specific conformations based on their environment. However, it is often difficult to explore the generation mechanism and achieve polymorphic control in artificial supramolecular assembly systems. In this work, we propose a feasible thought for exploring the transformation mechanism of polymorphism in peptide assembly from the perspective of thermodynamic regulation, which enables polymorphic composition to be limited by switchable intramolecular CH⋯π attraction within a certain temperature range. Combined with the density functional theory calculations, we obtained thermodynamic theoretical data supporting the conformation transition and the underlying polymorphism formation principle. Afterward, we properly designed the peptide to alter the probability of CH⋯π attraction occurring. Then, we selectively obtained a homogeneous morphological form with corresponding molecular conformation, which further demonstrated the important role of molecular conformational manipulation in polymorphism selection. This unique template-based strategy developed in this study may provide scientists with an additional line of thought to guide assembly paths in other polymorphic systems.
Collapse
Affiliation(s)
- Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zi-You Tian
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 China
| | - Chuan Dai
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yujie Wu
- Office of Core Facilities, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Wei Han
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University Kowloon Town Hong Kong SAR China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| |
Collapse
|
2
|
Aguilar OA, Fong LK, Lanier LL. ITAM-based receptors in natural killer cells. Immunol Rev 2024; 323:40-53. [PMID: 38411263 PMCID: PMC11102329 DOI: 10.1111/imr.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The ability of cells of the immune system to acquire features such as increased longevity and enhanced secondary responses was long thought to be restricted to cells of the adaptive immune system. Natural killer (NK) cells have challenged this notion by demonstrating that they can also gain adaptive features. This has been observed in both humans and mice during infection with cytomegalovirus (CMV). The generation of adaptive NK cells requires antigen-specific recognition of virally infected cells through stimulatory NK receptors. These receptors lack the ability to signal on their own and rather rely on adaptor molecules that contain ITAMs for driving signals. Here, we highlight our understanding of how these receptors influence the production of adaptive NK cells and propose areas in the field that merit further investigation.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| | - Lam-Kiu Fong
- Dept. of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Gámez F, Avilés-Moreno JR, Martens J, Berden G, Oomens J, Martínez-Haya B. Vibrational signatures of dynamic excess proton storage between primary amine and carboxylic acid groups. J Chem Phys 2024; 160:094311. [PMID: 38450729 DOI: 10.1063/5.0192331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Ammonium and carboxylic moieties play a central role in proton-mediated processes of molecular recognition, charge transfer or chemical change in (bio)materials. Whereas both chemical groups constitute acid-base pairs in organic salt-bridge structures, they may as well host excess protons in acidic environments. The binding of excess protons often precedes proton transfer reactions and it is therefore of fundamental interest, though challenging from a quantum chemical perspective. As a benchmark for this process, we investigate proton storage in the amphoteric compound 5-aminovaleric acid (AV), within an intramolecular proton bond shared by its primary amine and carboxylic acid terminal groups. Infrared ion spectroscopy is combined with ab initio Molecular Dynamics (AIMD) calculations to expose and rationalize the spectral signatures of protonated AV and its deuterated isotopologues. The dynamic character of the proton bond confers a fluxional structure to the molecular framework, leading to wide-ranging bands in the vibrational spectrum. These features are reproduced with remarkable accuracy by AIMD computations, which serves to lay out microscopic insights into the excess proton binding scenario.
Collapse
Affiliation(s)
- F Gámez
- Department of Physical Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J R Avilés-Moreno
- Department of Applied Physical Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - G Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - B Martínez-Haya
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
4
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Cai T, Lenoir Capello R, Pi X, Wu H, Chou JJ. Structural basis of γ chain family receptor sharing at the membrane level. Science 2023; 381:569-576. [PMID: 37535730 DOI: 10.1126/science.add1219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
Common γ chain (γc) cytokine receptors, including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 receptors, are activated upon engagement with a common γc receptor (CD132) by concomitant binding of their ectodomains to an interleukin. In this work, we find that direct interactions between the transmembrane domains (TMDs) of both the γc and the interleukin receptors (ILRs) are also required for receptor activation. Moreover, the same γc TMD can specifically recognize multiple ILR TMDs of diverse sequences within the family. Heterodimer structures of γc TMD bound to IL-7 and IL-9 receptor TMDs-determined in a lipid bilayer-like environment by nuclear magnetic resonance spectroscopy-reveal a conserved knob-into-hole mechanism of recognition that mediates receptor sharing within the membrane. Thus, signaling in the γc receptor family requires specific heterotypic interactions of the TMDs.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Lenoir Capello
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Duncan AL, Pezeshkian W. Mesoscale simulations: An indispensable approach to understand biomembranes. Biophys J 2023; 122:1883-1889. [PMID: 36809878 PMCID: PMC10257116 DOI: 10.1016/j.bpj.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Computer simulation techniques form a versatile tool, a computational microscope, for exploring biological processes. This tool has been particularly effective in exploring different features of biological membranes. In recent years, thanks to elegant multiscale simulation schemes, some fundamental limitations of investigations by distinct simulation techniques have been resolved. As a result, we are now capable of exploring processes spanning multiple scales beyond the capacity of any single technique. In this perspective, we argue that mesoscale simulations require more attention and must be further developed to fill evident gaps in a quest toward simulating and modeling living cell membranes.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Cai T, Lenoir Capello R, Pi X, Wu H, Chou JJ. Structural basis of γ -chain family receptor sharing at the membrane level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539662. [PMID: 37205582 PMCID: PMC10187304 DOI: 10.1101/2023.05.05.539662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The common γ-chain (γc) family of cytokine receptors, including interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 receptors, are activated upon engagement with the common γc receptor in ligand dependent manner. Sharing of γc by the IL receptors (ILRs) is thought to be achieved by concomitant binding of γc and ILR ectodomains to a cytokine. Here, we found that direct interactions between the transmembrane domain (TMD) of γc and those of the ILRs are also required for receptor activation, and remarkably, the same γc TMD can specifically recognize multiple ILR TMDs of diverse sequences. Heterodimer structures of γc TMD bound to the TMDs of IL-7R and IL-9R, determined in near lipid bilayer environment, reveal a conserved knob-into-hole mechanism of recognition that mediates receptor sharing within the membrane. Functional mutagenesis data indicate the requirement of the heterotypic interactions of TMDs in signaling, which could explain disease mutations within the receptor TMDs. One-Sentence Summary The transmembrane anchors of interleukin receptors of the gamma-chain family are critical for receptor sharing and activation.
Collapse
|
8
|
Aguilar OA, Fong LK, Ishiyama K, DeGrado WF, Lanier LL. The CD3ζ adaptor structure determines functional differences between human and mouse CD16 Fc receptor signaling. J Exp Med 2022; 219:e20220022. [PMID: 35320345 PMCID: PMC8953085 DOI: 10.1084/jem.20220022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells can detect antibody-coated cells through recognition by the CD16 Fc receptor. The importance of CD16 in human NK cell biology has long been appreciated, but how CD16 functions in mouse NK cells remains poorly understood. Here, we report drastic differences between human and mouse CD16 functions in NK cells. We demonstrate that one of the adaptor molecules that CD16 associates with and signals through, CD3ζ, plays a critical role in these functional differences. Using a systematic approach, we demonstrate that residues in the transmembrane domain of the mouse CD3ζ molecule prevent efficient complex formation with mouse CD16, thereby dampening receptor function. Mutating these residues in mouse CD3ζ to those encoded by human CD3ζ resulted in rescue of CD16 receptor function. We reveal that the mouse CD3ζ transmembrane domain adopts a tightly packed confirmation, preventing association with CD16, whereas human CD3ζ adopts a versatile configuration that accommodates receptor assembly.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Lam-Kiu Fong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|