1
|
Xu Z, Zhang F, Xie E, Hou C, Yin L, Liu H, Yin M, Yin L, Liu X, Huang Y. A Flexible, Large-Scale Sensing Array with Low-Power In-Sensor Intelligence. RESEARCH (WASHINGTON, D.C.) 2024; 7:0497. [PMID: 39540003 PMCID: PMC11558032 DOI: 10.34133/research.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Artificial intelligence of things systems equipped with flexible sensors can autonomously and intelligently detect the condition of the surroundings. However, current intelligent monitoring systems always rely on an external computer with the capability of machine learning rather than integrating it into the sensing device. The computer-assisted intelligent system is hampered by energy inefficiencies, privacy issues, and bandwidth restrictions. Here, a flexible, large-scale sensing array with the capability of low-power in-sensor intelligence based on a compression hypervector encoder is proposed for real-time recognition. The system with in-sensor intelligence can accommodate different individuals and learn new postures without additional computer processing. Both the communication bandwidth requirement and energy consumption of this system are significantly reduced by 1,024 and 500 times, respectively. The capability for in-sensor inference and learning eliminates the necessity to transmit raw data externally, thereby effectively addressing privacy concerns. Furthermore, the system possesses a rapid recognition speed (a few hundred milliseconds) and a high recognition accuracy (about 99%), comparing with support vector machine and other hyperdimensional computing methods. The research holds marked potential for applications in the integration of artificial intelligence of things and flexible electronics.
Collapse
Affiliation(s)
- Zhangyu Xu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Erxuan Xie
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Hou
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liting Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanqing Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengfei Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lang Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuejun Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Shin Y, Hong S, Hur YC, Lim C, Do K, Kim JH, Kim DH, Lee S. Damage-free dry transfer method using stress engineering for high-performance flexible two- and three-dimensional electronics. NATURE MATERIALS 2024; 23:1411-1420. [PMID: 38906994 DOI: 10.1038/s41563-024-01931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Advanced transfer printing technologies have enabled the fabrication of high-performance flexible and stretchable devices, revolutionizing many research fields including soft electronics, optoelectronics, bioelectronics and energy devices. Despite previous innovations, challenges remain, such as safety concerns due to toxic chemicals, the expensive equipment, film damage during the transfer process and difficulty in high-temperature processing. Thus a new transfer printing process is needed for the commercialization of high-performance soft electronic devices. Here we propose a damage-free dry transfer printing strategy based on stress control of the deposited thin films. First, stress-controlled metal bilayer films are deposited using direct current magnetron sputtering. Subsequently, mechanical bending is applied to facilitate the release of the metal bilayer by increasing the overall stress. Experimental and simulation studies elucidate the stress evolution mechanisms during the processes. By using this method, we successfully transfer metal thin films and high-temperature-treated oxide thin films onto flexible or stretchable substrates, enabling the fabrication of two-dimensional flexible electronic devices and three-dimensional multifunctional devices.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seungki Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Yong Chan Hur
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| | - Chanhyuk Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Kyungsik Do
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Ji Hoon Kim
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kim SB, Lee D, Kim J, Kim T, Sim JH, Yang JH, Oh SJ, Hahn S, Lee W, Choi D, Kim TS, Moon H, Yoo S. 3D height-alternant island arrays for stretchable OLEDs with high active area ratio and maximum strain. Nat Commun 2024; 15:7802. [PMID: 39242547 PMCID: PMC11379816 DOI: 10.1038/s41467-024-52046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Stretchable optoelectronic devices are typically realized through a 2D integration of rigid components and elastic interconnectors to maintain device performance under stretching deformation. However, such configurations inevitably sacrifice the area ratio of active components to enhance the maximum interconnector strain. We herein propose a 3D buckled height-alternant architecture for stretchable OLEDs that enables the high active-area ratio and the enhanced maximum strain simultaneously. Along with the optimal dual serpentine structure leading to a low critical buckling strain, a pop-up assisting adhesion blocking layer is proposed based on an array of micro concave structures for spatially selective adhesion control, enabling a reliable transition to a 3D buckled state with OLED-compatible processes. Consequently, we demonstrate stretchable OLEDs with both the high initial active-area ratio of 85% and the system strain of up to 40%, which would require a lateral interconnector strain of up to 512% if it were attained with conventional 2D rigid-island approaches. These OLEDs are shown to exhibit reliable performance under 2,000 biaxial cycles of 40% system strain. 7 × 7 passive-matrix OLED displays with the similar level of the initial active-area ratio and maximum system strain are also demonstrated.
Collapse
Affiliation(s)
- Su-Bon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Donggyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Junho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taehyun Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jee Hoon Sim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jong-Heon Yang
- Electronics Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
| | - Seung Jin Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sangin Hahn
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Woochan Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongho Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hanul Moon
- Department of Semiconductor; Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan, Republic of Korea.
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Xiong W, Zhang F, Qu S, Yin L, Li K, Huang Y. Marangoni-driven deterministic formation of softer, hollow microstructures for sensitivity-enhanced tactile system. Nat Commun 2024; 15:5596. [PMID: 38961075 PMCID: PMC11222500 DOI: 10.1038/s41467-024-49864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Microengineering the dielectric layers with three-dimensional microstructures has proven effective in enhancing the sensitivity of flexible pressure sensors. However, the widely employed geometrical designs of solid microstructures exhibit limited sensitivity over a wide range of pressures due to their inherent but undesired structural compressibility. Here, a Marangoni-driven deterministic formation approach is proposed for fabricating hollow microstructures, allowing for greater deformation while retarding structural stiffening during compression. Fluid convective deposition enables solute particles to reassemble in template microstructures, controlling the interior cavity with a void ratio exceeding 90%. The hollow micro-pyramid sensor exhibits a 10-fold sensitivity improvement across wider pressure ranges over the pressure sensor utilizing solid micro-pyramids, and an ultra-low detect limit of 0.21 Pa. With the advantages of facilitation, scalability, and large-area compatibility, such an approach for hollow microstructures can be expanded to other sensor types for superior performance and has considerable potential in robotic tactile and epidermal devices.
Collapse
Affiliation(s)
- Wennan Xiong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Fan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| | - Shiyuan Qu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Liting Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Kan Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
5
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Qiao C, Agnelli F, Pokkalla DK, D'Ambrosio N, Pasini D. Anisotropic Morphing in Bistable Kirigami through Symmetry Breaking and Geometric Frustration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313198. [PMID: 38413013 DOI: 10.1002/adma.202313198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Shape morphing in bistable kirigami enables remarkable functionalities appealing to a diverse range of applications across the spectrum of length scale. At the core of their shape shifting lies the architecture of their repeating unit, where highly deformable slits and quasi-rigid rotating units often exhibit multiple symmetries that confer isotropic deployment obeying uniform scaling transformation. In this work, symmetry breaking in bistable kirigami is investigated to access geometric frustration and anisotropic morphing, enabling arbitrarily scaled deployment in planar and spatial bistable domains. With an analysis on their symmetry properties complemented by a systematic investigation integrating semi-analytical derivations, numerical simulations, and experiments on elastic kirigami sheets, this work unveils the fundamental relations between slit symmetry, geometric frustration, and anisotropic bistable deployment. Furthermore, asymmetric kirigami units are leveraged in planar and flat-to-3D demonstrations to showcase the pivotal role of shear deformation in achieving target shapes and functions so far unattainable with uniformly stretchable kirigami. The insights provided in this work unveil the role of slit symmetry breaking in controlling the anisotropic bistable deployment of soft kirigami metamaterials, enriching the range of achievable functionalities for applications spanning deployable space structures, wearable technologies, and soft machines.
Collapse
Affiliation(s)
- Chuan Qiao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Filippo Agnelli
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Deepak Kumar Pokkalla
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Nicholas D'Ambrosio
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| |
Collapse
|
8
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
9
|
Lin X, Pan F, Ma Y, Wei Y, Yang K, Wu Z, Guan J, Ding B, Liu B, Xiang J, Chen Y. Mechanical Fourier transform for programmable metamaterials. Proc Natl Acad Sci U S A 2023; 120:e2305380120. [PMID: 37669372 PMCID: PMC10500267 DOI: 10.1073/pnas.2305380120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Proactively programming materials toward target nonlinear mechanical behaviors is crucial to realize customizable functions for advanced devices and systems, which arouses persistent explorations for rapid and efficient inverse design strategies. Herein, we propose a "mechanical Fourier transform" strategy to program mechanical behaviors of materials by mimicking the concept of Fourier transform. In this strategy, an arbitrary target force-displacement curve is decomposed into multiple cosine curves and a constant curve, each of which is realized by a rationally designed multistable module in an array-structured metamaterial. Various target curves with distinct shapes can be rapidly programmed and reprogrammed through only amplitude modulation on the modules. Two exemplary metamaterials are demonstrated to validate the strategy with a macroscale prototype based on magnet lattice and a microscale prototype based on an etched silicon wafer. This strategy applies to a variety of scales, constituents, and structures, and paves a way for the property programming of materials.
Collapse
Affiliation(s)
- Xin Lin
- Institute of Solid Mechanics, Beihang University, Beijing100191, China
| | - Fei Pan
- School of Aeronautic Science and Engineering, Beihang University, Beijing100191, China
| | - Yong Ma
- Institute of Solid Mechanics, Beihang University, Beijing100191, China
| | - Yuling Wei
- Institute of Solid Mechanics, Beihang University, Beijing100191, China
| | - Kang Yang
- School of Materials Science and Engineering, Beihang University, Beijing100191, China
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan243002, China
| | - Zihong Wu
- School of Materials Science and Engineering, Beihang University, Beijing100191, China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing100191, China
| | - Bin Ding
- Institute of Solid Mechanics, Beihang University, Beijing100191, China
| | - Bin Liu
- Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Jinwu Xiang
- School of Aeronautic Science and Engineering, Beihang University, Beijing100191, China
| | - Yuli Chen
- Institute of Solid Mechanics, Beihang University, Beijing100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou310023, China
| |
Collapse
|
10
|
Zhang Y, Pan C, Liu P, Peng L, Liu Z, Li Y, Wang Q, Wu T, Li Z, Majidi C, Jiang L. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat Commun 2023; 14:4428. [PMID: 37481621 PMCID: PMC10363174 DOI: 10.1038/s41467-023-40109-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Soft electromagnetic devices have great potential in soft robotics and biomedical applications. However, existing soft-magneto-electrical devices would have limited hybrid functions and suffer from damaging stress concentrations, delamination or material leakage. Here, we report a hybrid magnetic-mechanical-electrical (MME) core-sheath fiber to overcome these challenges. Assisted by the coaxial printing method, the MME fiber can be printed into complex 2D/3D MME structures with integrated magnetoactive and conductive properties, further enabling hybrid functions including programmable magnetization, somatosensory, and magnetic actuation along with simultaneous wireless energy transfer. To demonstrate the great potential of MME devices, precise and minimally invasive electro-ablation was performed with a flexible MME catheter with magnetic control, hybrid actuation-sensing was performed by a durable somatosensory MME gripper, and hybrid wireless energy transmission and magnetic actuation were demonstrated by an untethered soft MME robot. Our work thus provides a material design strategy for soft electromagnetic devices with unexplored hybrid functions.
Collapse
Affiliation(s)
- Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Chengfeng Pan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pengfei Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhouming Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Qingyuan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhe Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Carmel Majidi
- Soft Machines Lab, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
11
|
Wang K, Hou C, Cong L, Zhang W, Fan L, Wang X, Dong L. 3D Chiral Micro-Pinwheels Based on Rolling-Up Kirigami Technology. SMALL METHODS 2023:e2201627. [PMID: 37075739 DOI: 10.1002/smtd.202201627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Expanding micro-/nanostructures into 3D ones results not only in boosting structural integration level with compact geometry but also enhancing a device's complexity and functionality. Herein, a synergetic 3D micro-/nanoshape transformation is proposed by combining kirigami and rolling-up techniques, or rolling-up kirigami, for the first time. As an example, micro-pinwheels with multiple flabella are patterned on pre-stressed bilayer membranes and rolled up into 3D structures. The flabella are designed when they are patterned on a 2D thin film, facilitating the integration of micro-/nanoelement and other functionalization processes during 2D patterning, which is typically much easier than post-shaping an as-fabricated 3D structure by removing redundant materials or 3D printing. The dynamic rolling-up process is simulated using elastic mechanics with a movable releasing boundary. Mutual competition and cooperation among flabella are observed during the whole release process. More importantly, the mutual conversion between translation and rotation offers a reliable platform for developing parallel microrobots and adaptive 3D micro-antennas. Additionally, 3D chiral micro-pinwheel arrays integrated into a microfluidic chip are successfully applied to detect organic molecules in solution using a terahertz apparatus. With an extra actuation, active micro-pinwheels can potentially serve as a base to functionalize 3D kirigami as tunable devices.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Chaojian Hou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Longqing Cong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenqi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
12
|
Zhang L, Zhang Z, Weisbecker H, Yin H, Liu Y, Han T, Guo Z, Berry M, Yang B, Guo X, Adams J, Xie Z, Bai W. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. SCIENCE ADVANCES 2022; 8:eade0838. [PMID: 36542721 PMCID: PMC9770994 DOI: 10.1126/sciadv.ade0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
DNA and proteins fold in three dimensions (3D) to enable functions that sustain life. Emulation of such folding schemes for functional materials can unleash enormous potential in advancing a wide range of technologies, especially in robotics, medicine, and telecommunication. Here, we report a microfolding strategy that enables formation of 3D morphable microelectronic systems integrated with various functional materials, including monocrystalline silicon, metallic nanomembranes, and polymers. By predesigning folding hosts and configuring folding pathways, 3D microelectronic systems in freestanding forms can transform across various complex configurations with modulated functionalities. Nearly all transitional states of 3D microelectronic systems achieved via the microfolding assembly can be easily accessed and modulated in situ, offering functional versatility and adaptability. Advanced morphable microelectronic systems including a reconfigurable microantenna for customizable telecommunication, a 3D vibration sensor for hand-tremor monitoring, and a bloomable robot for cardiac mapping demonstrate broad utility of these assembly schemes to realize advanced functionalities.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Matt Berry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Binbin Yang
- Department of Electrical and Computer Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Xu Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Jacob Adams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
13
|
Li R, Zhang C, Li J, Zhang Y, Liu S, Hu Y, Jiang S, Chen C, Xin C, Tao Y, Dong B, Wu D, Chu J. Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation. Natl Sci Rev 2022; 9:nwac163. [PMID: 36381211 PMCID: PMC9647007 DOI: 10.1093/nsr/nwac163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 09/08/2023] Open
Abstract
Inspired by origami/kirigami, three-dimensional (3D) mesostructures assembled via a mechanics-guided approach, with reversible and maneuverable shape-morphing capabilities, have attracted great interest with regard to a broad range of applications. Despite intensive studies, the development of morphable 3D mesostructures with high-order (multi-degree-of-freedom) deformation and untethered high-frequency actuation remains challenging. This work introduces a scheme for a magnetically encoded transferable 3D mesostructure, with polyethylene terephthalate (PET) film as the skeleton and discrete magnetic domains as actuation units, to address this challenge. The high-order deformation, including hierarchical, multidirectional and blending shape morphing, is realized by encoding 3D discrete magnetization profiles on the architecture through ultraviolet curing. Reconfigurable 3D mesostructures with a modest structural modulus (∼3 GPa) enable both high-frequency (∼55 Hz) and large-deformation (∼66.8%) actuation under an alternating magnetic field. Additionally, combined with the shape-retention and adhesion property of PET, these 3D mesostructures can be readily transferred and attached to many solid substrates. On this basis, diverse functional devices, including a switchable colour letter display, liquid mixer, sequential flashlight and biomimetic sliding robot, are demonstrated to offer new perspectives for robotics and microelectronics.
Collapse
Affiliation(s)
- Rui Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yachao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Shunli Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Shaojun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Chao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Chen Xin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Bin Dong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
14
|
Ni X, Luan H, Kim JT, Rogge SI, Bai Y, Kwak JW, Liu S, Yang DS, Li S, Li S, Li Z, Zhang Y, Wu C, Ni X, Huang Y, Wang H, Rogers JA. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat Commun 2022; 13:5576. [PMID: 36151092 PMCID: PMC9508113 DOI: 10.1038/s41467-022-31092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Low modulus materials that can shape-morph into different three-dimensional (3D) configurations in response to external stimuli have wide-ranging applications in flexible/stretchable electronics, surgical instruments, soft machines and soft robotics. This paper reports a shape-programmable system that exploits liquid metal microfluidic networks embedded in an elastomer matrix, with electromagnetic forms of actuation, to achieve a unique set of properties. Specifically, this materials structure is capable of fast, continuous morphing into a diverse set of continuous, complex 3D surfaces starting from a two-dimensional (2D) planar configuration, with fully reversible operation. Computational, multi-physics modeling methods and advanced 3D imaging techniques enable rapid, real-time transformations between target shapes. The liquid-solid phase transition of the liquid metal allows for shape fixation and reprogramming on demand. An unusual vibration insensitive, dynamic 3D display screen serves as an application example of this type of morphable surface.
Collapse
Affiliation(s)
- Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Sam I Rogge
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yun Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Shangliangzi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhengwei Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xiaoyue Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Heling Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
15
|
Bai Y, Wang H, Xue Y, Pan Y, Kim JT, Ni X, Liu TL, Yang Y, Han M, Huang Y, Rogers JA, Ni X. A dynamically reprogrammable surface with self-evolving shape morphing. Nature 2022; 609:701-708. [PMID: 36131035 DOI: 10.1038/s41586-022-05061-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines1-3, flexible electronics4,5 and smart medicines6. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications7-24. Challenges lie in the development of schemes to reprogram target shapes after fabrication, especially when complexities associated with the operating physics and disturbances from the environment can stop the use of deterministic theoretical models to guide inverse design and control strategies25-30. Here we present a mechanical metasurface constructed from a matrix of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that follow from the passage of electrical currents in the presence of a static magnetic field. The resulting system demonstrates complex, dynamic morphing capabilities with response times within 0.1 second. Implementing an in situ stereo-imaging feedback strategy with a digitally controlled actuation scheme guided by an optimization algorithm yields surfaces that can follow a self-evolving inverse design to morph into a wide range of three-dimensional target shapes with high precision, including an ability to morph against extrinsic or intrinsic perturbations. These concepts support a data-driven approach to the design of dynamic soft matter, with many unique characteristics.
Collapse
Affiliation(s)
- Yun Bai
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Heling Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China. .,Institute of Flexible Electronics Technology of THU Jiaxing, Zhejiang, China.
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yuxin Pan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | - Xiaoyue Ni
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Miura-Ori Inspired Smooth Sheet Attachments for Zipper-Coupled Tubes. MATHEMATICS 2022. [DOI: 10.3390/math10152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zipper-coupled tubes are a broadly applicable, deployable mechanism with an angular surface that can be smoothed by attaching an additional smooth sheet pattern. The existing design for the smooth sheet attachment, however, leaves small gaps that can only be covered by adding flaps that unfold separately, limiting applicability in situations requiring a seamless surface and simultaneous deployment. We provide a novel construction of the smooth sheet attachment that unfolds simultaneously with zipper-coupled tubes to cover the entire surface without requiring additional actuation and without inhibiting the tubes’ motion up to an ideal, unfolded state of stability. Furthermore, we highlight the mathematics underlying the design and motion of the new smooth sheet pattern, thereby demonstrating its rigid-foldability and compatibility with asymmetric zipper-coupled tubes.
Collapse
|
17
|
Jo Y, Hwang JH, Lee SS, Lee SY, Kim YS, Kim DG, Choi Y, Jeong S. Printable Self-Activated Liquid Metal Stretchable Conductors from Polyvinylpyrrolidone-Functionalized Eutectic Gallium Indium Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10747-10757. [PMID: 35099918 DOI: 10.1021/acsami.1c20185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable electronic circuits are critical in a variety of next-generation electronics applications, including soft robots, wearable technologies, and biomedical applications. To date, printable composite conductors comprising various types of conductive fillers have been suggested to achieve high electrical conductance and excellent stretchability. Among them, liquid metal particles have been considered as a viable candidate filler that can meet the necessary prerequisites. However, a mechanical activation process is needed to generate interconnected liquid channels inside elastomeric polymers. In this study, we have developed a chemical strategy of surface-functionalizing liquid metal particles to eliminate the necessity of additional mechanical activation processes. We found that the characteristic conformations of the polyvinylpyrrolidone surrounding eutectic gallium indium particles are highly dependent on the molecular weight of polyvinylpyrrolidone. By virtue of the specific chemical roles of polyvinylpyrrolidone, the as-printed composite layers are highly conductive and stretchable, exhibiting an electrical conductivity approaching 8372 S/cm at 100% strain and an invariant resistance change of 0.92 even at 75% strain after a 60,000 cycle test. The results demonstrate that the self-activated liquid metal-based composite conductors are applicable to traditional stretchable electronics, healable stretchable electronics, and shape-morphable applications.
Collapse
Affiliation(s)
- Yejin Jo
- Department of Advanced Materials Engineering for Information and Electronics, and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Jae Hyuk Hwang
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Sun Sook Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Su Yeon Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Yong Seok Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Dong-Gyun Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Youngmin Choi
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Sunho Jeong
- Department of Advanced Materials Engineering for Information and Electronics, and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| |
Collapse
|
18
|
Thermal Analysis on Active Heat Dissipation Design with Embedded Flow Channels for Flexible Electronic Devices. MICROMACHINES 2021; 12:mi12101165. [PMID: 34683216 PMCID: PMC8538787 DOI: 10.3390/mi12101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Heat generation is a major issue in all electronics, as heat reduces product life, reliability, and performance, especially in flexible electronics with low thermal-conductivity polymeric substrates. In this sense, the active heat dissipation design with flow channels holds great promise. Here, a theoretical model, validated by finite element analysis and experiments, based on the method of the separation of variables, is developed to study the thermal behavior of the active heat dissipation design with an embedded flow channel. The influences of temperature and flow velocity of the fluid on heat dissipation performance were systematically investigated. The influence of channel spacing on heat dissipation performance was also studied by finite element analysis. The study shows that performance can be improved by decreasing the fluid temperature or increasing the flow velocity and channel density. These results can help guide the design of active heat dissipation with embedded flow channels to reduce adverse effects due to excessive heating, thus enhancing the performance and longevity of electronic products.
Collapse
|