1
|
Pan Y, Jiang Y, Wang D, Guo Z, He F, Chen Z, Dai C, Yuan Z, Chen R, Xu K, Hu Y. Anti-CRMP2 antibody induces anxiety-like behavior and increases pyramidal neuron excitability in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167338. [PMID: 38986818 DOI: 10.1016/j.bbadis.2024.167338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND We have previously identified auto-antibody (Ab) to collapsin response mediator protein 2 (CRMP2) in patients with encephalitis. The present study aims to evaluate the pathogenic effects of anti-CRMP2 Ab. METHODS Recombinant CRMP2 protein was injected subcutaneously into mice to establish an active immune mouse model with anti-CRMP2 Ab. Behavioral assessments, histopathological staining, and electrophysiological testing were performed to identify any pathogenic changes. RESULTS The mice exhibited signs of impaired motor coordination four weeks post-immunization of CRMP2 protein. Moreover, CRMP2 immunized mice for eight weeks showed anxiety-like behaviors indicating by tests of open field and the elevated plus maze. After incubating the CA1 region of hippocampal brain section with the sera from CRMP2 immunized mice, the whole-cell path-clamp recordings showed increased excitability of pyramidal neurons. However, no obvious inflammation and infiltration of immune cells were observed by histopathological analysis. Western blot showed that the phosphorylation levels of CRMP2-Thr514 and -Ser522 were not affected. CONCLUSION In an active immunization model with CRMP2 protein, impaired coordination and anxiety-like behaviors were observed. Also, anti-CRMP2 Abs containing sera heightened the excitability of hippocampal pyramidal neurons in vitro, which imply the pathogenic effects of anti-CRMP2 Ab.
Collapse
Affiliation(s)
- Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongmei Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhipeng Guo
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
| | - Fenfen He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zirui Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaowei Dai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhirong Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Feuer KL, Peng X, Yovo CK, Avramopoulos D. DPYSL2/CRMP2 isoform B knockout in human iPSC-derived glutamatergic neurons confirms its role in mTOR signaling and neurodevelopmental disorders. Mol Psychiatry 2023; 28:4353-4362. [PMID: 37479784 PMCID: PMC11138811 DOI: 10.1038/s41380-023-02186-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
The DPYSL2/CRMP2 gene encodes a microtubule-stabilizing protein crucial for neurogenesis and is associated with numerous psychiatric and neurodegenerative disorders including schizophrenia, bipolar disorder, and Alzheimer's disease. DPYSL2 generates multiple RNA and protein isoforms, but few studies have differentiated between them. We previously reported an association of a functional variant in the DPYSL2-B isoform with schizophrenia (SCZ) and demonstrated in HEK293 cells that this variant reduced the length of cellular projections and created transcriptomic changes that captured schizophrenia etiology by disrupting mTOR signaling-mediated regulation. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells (iPSCs) and neurons. CRISPR/Cas9-faciliated knockout of DPYSL2-B in iPSCs followed by Ngn2-induced differentiation to glutamatergic neurons showed a reduction in DPYSL2-B/CRMP2-B RNA and protein with no observable impact on DPYSL2-A/CRMP2-A. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis revealed disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of the differentially expressed genes in SCZ-associated loci from genome-wide association studies (GWAS). Our findings expand our previous results to neuronal cells, clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.
Collapse
Affiliation(s)
- Kyra L Feuer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xi Peng
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christian K Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci 2023; 17:1154446. [PMID: 37144098 PMCID: PMC10153444 DOI: 10.3389/fnins.2023.1154446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).
Collapse
Affiliation(s)
| | - Dévina C. Ung
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Patrick Vourc’h
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Médéric Jeanne
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- *Correspondence: Frédéric Laumonnier,
| |
Collapse
|
5
|
Kawamoto Y, Tada M, Asano T, Nakamura H, Jitsuki-Takahashi A, Makihara H, Kubota S, Hashiguchi S, Kunii M, Ohshima T, Goshima Y, Takeuchi H, Doi H, Nakamura F, Tanaka F. Phosphorylated CRMP1, axon guidance protein, is a component of spheroids and is involved in axonal pathology in amyotrophic lateral sclerosis. Front Neurol 2022; 13:994676. [PMID: 36237616 PMCID: PMC9552802 DOI: 10.3389/fneur.2022.994676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a “dying back” manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A–CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.
Collapse
Affiliation(s)
- Yuko Kawamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Aoi Jitsuki-Takahashi
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroko Makihara
- Department of Nursing Course Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- *Correspondence: Fumiaki Tanaka
| |
Collapse
|
6
|
Asano T, Nakamura H, Kawamoto Y, Tada M, Kimura Y, Takano H, Yao R, Saito H, Ikeda T, Komiya H, Kubota S, Hashiguchi S, Takahashi K, Kunii M, Tanaka K, Goshima Y, Nakamura F, Takeuchi H, Doi H, Tanaka F. Inhibition of Crmp1 Phosphorylation at Ser522 Ameliorates Motor Function and Neuronal Pathology in Amyotrophic Lateral Sclerosis Model Mice. eNeuro 2022; 9:ENEURO.0133-22.2022. [PMID: 35523582 PMCID: PMC9131721 DOI: 10.1523/eneuro.0133-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a comprehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and depletion in SOD1G93A mice using Crmp1S522A (Ser522→Ala) knock-in (Crmp1ki/ki ) mice in which the S522 phosphorylation site was abolished and Crmp1 knock-out (Crmp1-/-) mice, respectively. Crmp1ki/ki /SOD1G93A mice showed longer latency to fall in a rotarod test while Crmp1-/-/SOD1G93A mice showed shorter latency compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki /SOD1G93A mice but not in Crmp1-/-/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki /SOD1G93A mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki /SOD1G93A and Crmp1-/-/SOD1G93A mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuko Kawamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroya Saito
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Ikeda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|