1
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
2
|
Iyer DP, Khoei HH, van der Weijden VA, Kagawa H, Pradhan SJ, Novatchkova M, McCarthy A, Rayon T, Simon CS, Dunkel I, Wamaitha SE, Elder K, Snell P, Christie L, Schulz EG, Niakan KK, Rivron N, Bulut-Karslioğlu A. mTOR activity paces human blastocyst stage developmental progression. Cell 2024; 187:6566-6583.e22. [PMID: 39332412 PMCID: PMC7617234 DOI: 10.1016/j.cell.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Afshan McCarthy
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire S Simon
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ilona Dunkel
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sissy E Wamaitha
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Edda G Schulz
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kathy K Niakan
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
4
|
Ye J, Xu Y, Ren Q, Liu L, Sun Q. Nutrient deprivation induces mouse embryonic diapause mediated by Gator1 and Tsc2. Development 2024; 151:dev202091. [PMID: 38603796 DOI: 10.1242/dev.202091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.
Collapse
Affiliation(s)
- Jiajia Ye
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Ren
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
5
|
Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. Developmental progression continues during embryonic diapause in the roe deer. Commun Biol 2024; 7:270. [PMID: 38443549 PMCID: PMC10914810 DOI: 10.1038/s42003-024-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - João Agostinho de Sousa
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ferdinand von Meyenn
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Hubert Pausch
- ETH Zurich, Animal Genomics, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| |
Collapse
|
6
|
Easwaran S, Montell DJ. The molecular mechanisms of diapause and diapause-like reversible arrest. Biochem Soc Trans 2023; 51:1847-1856. [PMID: 37800560 PMCID: PMC10657177 DOI: 10.1042/bst20221431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.
Collapse
Affiliation(s)
- Sreesankar Easwaran
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| |
Collapse
|
7
|
Zhao J, Wang W, Zhang L, Zhang J, Sturmey R, Zhang J. Dynamic metabolism during early mammalian embryogenesis. Development 2023; 150:dev202148. [PMID: 37877936 DOI: 10.1242/dev.202148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Dynamic metabolism is exhibited by early mammalian embryos to support changing cell fates during development. It is widely acknowledged that metabolic pathways not only satisfy cellular energetic demands, but also play pivotal roles in the process of cell signalling, gene regulation, cell proliferation and differentiation. Recently, various new technological advances have been made in metabolomics and computational analysis, deepening our understanding of the crucial role of dynamic metabolism during early mammalian embryogenesis. In this Review, we summarize recent studies on oocyte and embryo metabolism and its regulation, with a particular focus on its association with key developmental events such as fertilization, zygote genome activation and cell fate determination. In addition, we discuss the mechanisms of certain metabolites that, in addition to serving as energy sources, contribute to epigenetic modifications.
Collapse
Affiliation(s)
- Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jia Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Roger Sturmey
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Miles JR, Walsh SC, Rempel LA, Pannier AK. Mechanisms regulating the initiation of porcine conceptus elongation. Mol Reprod Dev 2023; 90:646-657. [PMID: 35719060 DOI: 10.1002/mrd.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Significant increases in litter size within commercial swine production over the past decades have led to increases in preweaning piglet mortality due to increase within-litter birthweight variation, typically due to mortality of the smallest littermate piglets. Therefore, identifying mechanisms to reduce variation in placental development and subsequent fetal growth are critical to normalizing birthweight variation and improving piglet survivability in high-producing commercial pigs. A major contributing factor to induction of within-litter variation occurs during the peri-implantation period as the pig blastocyst elongates from spherical to filamentous morphology in a short period of time and rapidly begins superficial implantation. During this period, there is significant within-litter variation in the timing and extent of elongation among littermates. As a result, delays and deficiencies in conceptus elongation not only contribute directly to early embryonic mortality, but also influence subsequent within-litter birthweight variation. This study will highlight key aspects of conceptus elongation and provide some recent evidence pertaining to specific mechanisms from -omics studies (i.e., metabolomics of the uterine environment and transcriptomics of the conceptus) that may specifically regulate the initiation of conceptus elongation to identify potential factors to reduce within-litter variation and improve piglet survivability.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Sophie C Walsh
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| | - Lea A Rempel
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| |
Collapse
|
10
|
Rüegg AB, Ulbrich SE. Review: Embryonic diapause in the European roe deer - slowed, but not stopped. Animal 2023; 17 Suppl 1:100829. [PMID: 37567662 DOI: 10.1016/j.animal.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
Embryonic diapause in mammals describes a transient reduction of proliferation and developmental progression occurring at the blastocyst stage. It was first described in the European roe deer (Capreolus capreolus) in the 19th century, and later found to occur in at least over 130 mammalian species across several taxa. Diapause is often displayed as an interruption, a halt, or an arrest of embryonic development. In this review, we explore reduced, but not stopped pace of growth, proliferation and developmental progression during embryonic diapause and revisit early embryonic proliferation and continued slow development as peculiar phenomenon in the roe deer.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland.
| |
Collapse
|
11
|
Rüegg AB, Kowalewski MP, Ulbrich SE. Endometrial extracellular matrix components do not change over the course of embryonic diapause and reactivation in the roe deer (Capreolus capreolus). Reprod Domest Anim 2023; 58:594-604. [PMID: 36645739 DOI: 10.1111/rda.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 01/17/2023]
Abstract
The modification of the endometrial extracellular matrix (ECM) is a crucial step for embryo implantation in many mammalian species. The embryo of the European roe deer (Capreolus capreolus) displays a 4-5 months long temporary reduction of developmental pace termed embryonic diapause. A reduction of epithelial cell height during diapause has previously been described. Co-occurring ECM modifications may contribute to the changes of the intra-uterine milieu during reactivation at which the embryo regains developmental velocity. We assessed the localization of five ECM proteins (collagen I and IV, fibronectin, laminin, and extracellular matrix protein 1) using immunohistochemistry in animals with early, late, and post-diapause (elongating) embryos. While our results confirmed the reduction of epithelial height during diapause, we only detected marginal differences in localization and staining intensities of the selected ECM proteins. Major ECM remodelling events in the roe deer endometrium are thus likely to occur only at implantation.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
12
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|