1
|
Saini RS, Vaddamanu SK, Dermawan D, Mosaddad SA, Heboyan A. Investigating the role of temperature and moisture on the degradation of 3D-printed polymethyl methacrylate dental materials through molecular dynamics simulations. Sci Rep 2024; 14:26079. [PMID: 39478155 PMCID: PMC11526103 DOI: 10.1038/s41598-024-77736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
This study aimed to comprehensively investigate the degradation behavior of 3D printed polymethyl methacrylate (PMMA) dental materials, with a specific focus on the influential factors of temperature and moisture, by employing molecular dynamics simulations. Owing to their aesthetic properties, 3D-printed PMMA dental materials play a pivotal role in dental applications. However, understanding their degradation mechanisms, particularly in the context of temperature and moisture variations, is crucial for their long-term durability. A Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was utilized for the molecular dynamics simulations. The simulation setup included temperature variations from 300 to 600 K and relative humidity (RH) levels ranging from 20 to 100%. Various mechanical properties and structural changes were analyzed to determine the degradation behavior. Energetic profiling during equilibration and the subsequent temperature variations were studied. The spatial distribution of the mean squared displacement, non-bond energy, Young's modulus, bending stress, and volume expansion coefficient of the particles were quantitatively analyzed, revealing temperature- and moisture-dependent trends. The study concluded that temperature and moisture significantly affected the degradation behavior of 3D-printed PMMA dental materials. Higher temperatures and increased humidity levels contribute to reduced mechanical strength and altered structural properties, emphasizing the importance of controlling environmental conditions during fabrication.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tian Y, Gao M, Xie H, Xu S, Ye M, Liu Z. Spatiotemporal Heterogeneity of Temperature and Catalytic Activation within Individual Catalyst Particles. J Am Chem Soc 2024; 146:4958-4972. [PMID: 38334752 DOI: 10.1021/jacs.3c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Temperature is a critical parameter in chemical conversion, significantly affecting the reaction kinetics and thermodynamics. Measuring temperature inside catalyst particles of industrial interest (∼micrometers to millimeters), which is crucial for understanding the evolution of chemical dynamics at catalytic active sites during reaction and advancing catalyst designs, however, remains a big challenge. Here, we propose an approach combining two-photon confocal microscopy and state-of-the-art upconversion luminescence (UL) imaging to measure the spatiotemporal-resolved temperature within individual catalyst particles in the industrially significant methanol-to-hydrocarbons reaction. Specifically, catalyst particles containing zeolites and functional nanothermometers were fabricated using microfluidic chips. Our experimental results directly demonstrate that the zeolite density and particle size can alter the temperature distribution within a single catalyst particle. Importantly, the observed temperature heterogeneity plays a decisive role in the activation of the reaction intermediate and the utilization of active sites. We expect that this work opens a venue for unveiling the reaction mechanism and kinetics within industrial catalyst particles by considering temperature heterogeneity.
Collapse
Affiliation(s)
- Yu Tian
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Mingbin Gao
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Hua Xie
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Shuliang Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Mao Ye
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
3
|
Kang Q, Chu M, Xu P, Wang X, Wang S, Cao M, Ivasenko O, Sham TK, Zhang Q, Sun Q, Chen J. Entropy Confinement Promotes Hydrogenolysis Activity for Polyethylene Upcycling. Angew Chem Int Ed Engl 2023; 62:e202313174. [PMID: 37799095 DOI: 10.1002/anie.202313174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state. This approach involves the synthesis of p-Ru/SBA catalysts, in which Ru nanoparticles are uniformly distributed within the channels of an SBA-15 support, using a precise impregnation method. The unique design of the p-Ru/SBA catalyst has demonstrated significant improvements in catalytic performance for the conversion of polyethylene into high-value liquid fuels, particularly diesel. The catalyst achieved a high solid conversion rate of 1106 g ⋅ gRu -1 ⋅ h-1 at 230 °C. Comparatively, this catalytic activity is 4.9 times higher than that of a control catalyst, Ru/SiO2 , and 14.0 times higher than that of a commercial catalyst, Ru/C, at 240 °C. This remarkable catalytic activity opens up immense opportunities for the chemical upcycling of waste plastics.
Collapse
Affiliation(s)
- Qingyun Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Panpan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Shiqi Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Oleksandr Ivasenko
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
Qu W, Luo M, Tang Z, Zhong T, Zhao H, Hu L, Xia D, Tian S, Shu D, He C. Accelerated Catalytic Ozonation in a Mesoporous Carbon-Supported Atomic Fe-N 4 Sites Nanoreactor: Confinement Effect and Resistance to Poisoning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13205-13216. [PMID: 37487235 DOI: 10.1021/acs.est.2c08101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The design of a micro-/nanoreactor is of great significance for catalytic ozonation, which can achieve effective mass transfer and expose powerful reaction species. Herein, the mesoporous carbon with atomic Fe-N4 sites embedded in the ordered carbon nanochannels (Fe-N4/CMK-3) was synthesized by the hard-template method. Fe-N4/CMK-3 can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the internal catalytic ozonation of CH3SH. During the CH3SH oxidation process, the mass transfer coefficient of the Fe-N4/CMK-3 confined system with sufficient O3 transfer featured a level of at least 1.87 × 10-5, which is 34.6 times that of the Fe-N4/C-Si unconfined system. Detailed experimental studies and theoretical calculations demonstrated that the anchored atomic Fe-N4 sites and nanoconfinement effects regulated the local electronic structure of the catalyst and promoted the activation of O3 molecules to produce atomic oxygen species (AOS) and reactive oxygen species (ROS), eventually achieving efficient oxidation of CH3SH into CO2/SO42-. Benefiting from the high diffusion rate and the augmentation of AOS/ROS, Fe-N4/CMK-3 exhibited an excellent poisoning tolerance, along with high catalytic durability. This contribution provides the proof-of-concept strategy for accelerating catalytic ozonation of sulfur-containing volatile organic compounds (VOCs) by combining confined catalysis and atomic catalysts and can be extended to the purification of other gaseous pollutants.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Manhui Luo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
5
|
Ma Y, Hu J, Fan K, Chen W, Han S, Wu Q, Ma Y, Zheng A, Kunkes E, De Baerdemaeker T, Parvulescu AN, Bottke N, Yokoi T, De Vos DE, Meng X, Xiao FS. Design of an Organic Template for Synthesizing ITR Zeolites under Ge-Free Conditions. J Am Chem Soc 2023; 145:17284-17291. [PMID: 37489934 DOI: 10.1021/jacs.3c04652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Germanosilicate zeolites with various structures have been extensively synthesized, but the syntheses of corresponding zeolite structures in the absence of germanium species remain a challenge. One such example is an ITR zeolite structure, which is a twin of the ITH zeolite structure. Through the modification of a classic organic template for synthesizing ITH zeolites and thus designing a new organic template with high compatibility to ITR zeolite assisted by theoretical simulation, we, for the first time, show the Ge-free synthesis of an ITR structure including pure silica, aluminosilicate, and borosilicate ITR zeolites. These materials have high crystallinity, corresponding to an ITR content of more than 95%. In the methanol-to-propylene (MTP) reaction, the obtained aluminosilicate ITR zeolite exhibits excellent propylene selectivity and a long lifetime compared with conventional aluminosilicate ZSM-5 zeolite. The strategy for the design of organic templates might offer a new opportunity for rational syntheses of novel zeolites and, thus, the development of highly efficient zeolite catalysts in the future.
Collapse
Affiliation(s)
- Ye Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Kai Fan
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shichao Han
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Qinming Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | - Toshiyuki Yokoi
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, Leuven 3001, Belgium
| | - Xiangju Meng
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Feng-Shou Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Yuan J, Gao M, Liu Z, Tang X, Tian Y, Ma G, Ye M, Zheng A. Hyperloop-like diffusion of long-chain molecules under confinement. Nat Commun 2023; 14:1735. [PMID: 36977714 PMCID: PMC10050162 DOI: 10.1038/s41467-023-37455-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The ultrafast transport of adsorbates in confined spaces is a goal pursued by scientists. However, diffusion will be generally slower in nano-channels, as confined spaces inhibit motion. Here we show that the movement of long-chain molecules increase with a decrease in pore size, indicating that confined spaces promote transport. Inspired by a hyperloop running on a railway, we established a superfast pathway for molecules in zeolites with nano-channels. Rapid diffusion is achieved when the long-chain molecules keep moving linearly, as well as when they run along the center of the channel, while this phenomenon do not exist for short-chain molecules. This hyperloop-like diffusion is unique for long-chain molecules in a confined space and is further verified by diffusion experiments. These results offer special insights into molecule diffusion under confinement, providing a reference for the selection of efficient catalysts with rapid transport in the industrial field.
Collapse
Affiliation(s)
- Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Mingbin Gao
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Yu Tian
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Gang Ma
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Mao Ye
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
7
|
Song M, Zhang B, Zhai Z, Liu S, Wang L, Liu G. Highly Dispersed Pt Stabilized by ZnO x-Si on Self-Pillared Zeolite Nanosheets for Propane Dehydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Mingxia Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
8
|
Han Y, Yuan J, Xing M, Cao J, Chen Z, Zhang L, Tao Z, Liu Z, Zheng A, Wen X, Yang Y, Li Y. Shape selectivity of zeolite for hydroisomerization of long-chain alkanes. NEW J CHEM 2023. [DOI: 10.1039/d2nj04976g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The matching degree between the zeolite channel size and the isomer size determines the product distribution of dodecane hydroisomerization.
Collapse
Affiliation(s)
- Yuanlong Han
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiamin Yuan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Mengjiao Xing
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiqiang Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhang
- National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing 101400, P. R. China
| | - Zhichao Tao
- National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing 101400, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing 101400, P. R. China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing 101400, P. R. China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing 101400, P. R. China
| |
Collapse
|
9
|
Ji Y, Liu Z, Zhao Z, Gao P, Bao X, Chen K, Hou G. Untangling Framework Confinements: A Dynamical Study on Bulky Aromatic Molecules in MFI Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Ji
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhengmao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| |
Collapse
|
10
|
Zhang M, Liu L, Wang L, Zhang X, Li G. Four-Carbon Segmented Discrete Hydrocracking of Long-Chain Paraffins in MTT Channels Following a Pore-Mouth Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Linlin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
11
|
Li W, Li Y, Liu Z, Zhang H, Jiang F, Liu B, Xu Y, Zheng A, Liu X. Pore-Confined and Diffusion-Dependent Olefin Catalytic Cracking for the Production of Propylene over SAPO Zeolites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wanqiu Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Heng Zhang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|