1
|
Frans VF, Liu J. Gaps and opportunities in modelling human influence on species distributions in the Anthropocene. Nat Ecol Evol 2024; 8:1365-1377. [PMID: 38867092 PMCID: PMC11239511 DOI: 10.1038/s41559-024-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Understanding species distributions is a global priority for mitigating environmental pressures from human activities. Ample studies have identified key environmental (climate and habitat) predictors and the spatial scales at which they influence species distributions. However, regarding human influence, such understandings are largely lacking. Here, to advance knowledge concerning human influence on species distributions, we systematically reviewed species distribution modelling (SDM) articles and assessed current modelling efforts. We searched 12,854 articles and found only 1,429 articles using human predictors within SDMs. Collectively, these studies of >58,000 species used 2,307 unique human predictors, suggesting that in contrast to environmental predictors, there is no 'rule of thumb' for human predictor selection in SDMs. The number of human predictors used across studies also varied (usually one to four per study). Moreover, nearly half the articles projecting to future climates held human predictors constant over time, risking false optimism about the effects of human activities compared with climate change. Advances in using human predictors in SDMs are paramount for accurately informing and advancing policy, conservation, management and ecology. We show considerable gaps in including human predictors to understand current and future species distributions in the Anthropocene, opening opportunities for new inquiries. We pose 15 questions to advance ecological theory, methods and real-world applications.
Collapse
Affiliation(s)
- Veronica F Frans
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Leigh DM, Vandergast AG, Hunter ME, Crandall ED, Funk WC, Garroway CJ, Hoban S, Oyler-McCance SJ, Rellstab C, Segelbacher G, Schmidt C, Vázquez-Domínguez E, Paz-Vinas I. Best practices for genetic and genomic data archiving. Nat Ecol Evol 2024; 8:1224-1232. [PMID: 38789640 DOI: 10.1038/s41559-024-02423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Genetic and genomic data are collected for a vast array of scientific and applied purposes. Despite mandates for public archiving, data are typically used only by the generating authors. The reuse of genetic and genomic datasets remains uncommon because it is difficult, if not impossible, due to non-standard archiving practices and lack of contextual metadata. But as the new field of macrogenetics is demonstrating, if genetic data and their metadata were more accessible and FAIR (findable, accessible, interoperable and reusable) compliant, they could be reused for many additional purposes. We discuss the main challenges with existing genetic and genomic data archives, and suggest best practices for archiving genetic and genomic data. Recognizing that this is a longstanding issue due to little formal data management training within the fields of ecology and evolution, we highlight steps that research institutions and publishers could take to improve data archiving.
Collapse
Affiliation(s)
- Deborah M Leigh
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
| | - Amy G Vandergast
- US Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Margaret E Hunter
- US Geological Survey, Wetland & Aquatic Research Center, Gainesville, FL, USA
| | - Eric D Crandall
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | | | | | | | - Chloé Schmidt
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ivan Paz-Vinas
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Universite Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne, France
| |
Collapse
|
3
|
Babik W, Marszałek M, Dudek K, Antunes B, Palomar G, Zając B, Taugbøl A, Pabijan M. Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural-urban gradients. Evol Appl 2024; 17:e13700. [PMID: 38832082 PMCID: PMC11146147 DOI: 10.1111/eva.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad Bufo bufo (26 localities, 480 individuals), and the smooth newt Lissotriton vulgaris (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in B. bufo and 7040 in L. vulgaris) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Zając
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| | - A. Taugbøl
- Norwegian Institute for Nature ResearchLillehammerNorway
| | - M. Pabijan
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| |
Collapse
|
4
|
Savage AM, Willmott MJ, Moreno‐García P, Jagiello Z, Li D, Malesis A, Miles LS, Román‐Palacios C, Salazar‐Valenzuela D, Verrelli BC, Winchell KM, Alberti M, Bonilla‐Bedoya S, Carlen E, Falvey C, Johnson L, Martin E, Kuzyo H, Marzluff J, Munshi‐South J, Phifer‐Rixey M, Stadnicki I, Szulkin M, Zhou Y, Gotanda KM. Online toolkits for collaborative and inclusive global research in urban evolutionary ecology. Ecol Evol 2024; 14:e11633. [PMID: 38919647 PMCID: PMC11197044 DOI: 10.1002/ece3.11633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging. Therefore, an online collaborative research hub, where common methods and best practices are shared among scientists from diverse geographic, ethnic, and career backgrounds would make research focused on urban evolutionary ecology more inclusive. Here, we describe a freely available online research hub for toolkits that facilitate global research in urban evolutionary ecology. We provide rationales and descriptions of toolkits for: (1) decolonizing urban evolutionary ecology; (2) identifying and fostering international collaborative partnerships; (3) common methods and freely-available datasets for trait mapping across cities; (4) common methods and freely-available datasets for cross-city evolutionary ecology experiments; and (5) best practices and freely available resources for public outreach and communication of research findings in urban evolutionary ecology. We outline how the toolkits can be accessed, archived, and modified over time in order to sustain long-term global research that will advance our understanding of urban evolutionary ecology.
Collapse
Affiliation(s)
- Amy M. Savage
- Department of Biology & Center for Computational and Integrative BiologyRutgers University – CamdenCamdenNew JerseyUSA
| | - Meredith J. Willmott
- Department of Biology & Center for Computational and Integrative BiologyRutgers University – CamdenCamdenNew JerseyUSA
| | - Pablo Moreno‐García
- Department of Biological Sciences, Center for Computation & TechnologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Zuzanna Jagiello
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Daijiang Li
- Department of Biological Sciences, Center for Computation & TechnologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Anna Malesis
- Department of Urban Design and PlanningUniversity of WashingtonSeattleWashingtonUSA
| | - Lindsay S. Miles
- Virginia Polytechnic and State UniversityEntomology DepartmentBlacksburgVirginiaUSA
| | | | - David Salazar‐Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático & Facultad de Ciencias de Medio AmbienteUniversidad IndoaméricaQuitoEcuador
| | - Brian C. Verrelli
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Marina Alberti
- Department of Urban Design and PlanningUniversity of WashingtonSeattleWashingtonUSA
| | | | - Elizabeth Carlen
- Department of BiologyWashington University of St. LouisSt. LouisMissouriUSA
| | - Cleo Falvey
- Department of Biology & Center for Computational and Integrative BiologyRutgers University – CamdenCamdenNew JerseyUSA
| | - Lauren Johnson
- Department of BiologyWashington University of St. LouisSt. LouisMissouriUSA
| | - Ella Martin
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Hanna Kuzyo
- Frankfurt Zoological SocietyFrankfurtGermany
| | - John Marzluff
- Department of Urban Design and PlanningUniversity of WashingtonSeattleWashingtonUSA
| | - Jason Munshi‐South
- Louis Calder Center & Department of Biological SciencesFordham UniversityArmonkNew YorkUSA
| | | | - Ignacy Stadnicki
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Marta Szulkin
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Yuyu Zhou
- Department of Geological and Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Kiyoko M. Gotanda
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
5
|
Martin E, El-Galmady S, Johnson MTJ. Urban socioeconomic variation influences the ecology and evolution of trophic interactions. Ecol Lett 2024; 27:e14407. [PMID: 38504478 DOI: 10.1111/ele.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
As urbanization expands, it is becoming increasingly important to understand how anthropogenic activity is affecting ecological and evolutionary processes. Few studies have examined how human social patterns within cities can modify eco-evolutionary dynamics. We tested how socioeconomic variation corresponds with changes in trophic interactions and natural selection on prey phenotypes using the classic interaction between goldenrod gall flies (Eurosta solidaginis) and their natural enemies: birds, beetles, and parasitoid wasps. We sampled galls from 84 sites across neighbourhoods with varying socioeconomic levels, and quantified the frequency of predation/parasitism on flies and natural selection by each enemy. We found that bird predation was higher in the highest income neighbourhoods, increasing the strength of selection for smaller galls. Wasp and beetle attack, but not their strength of selection, increased in lower income neighbourhoods. We show that socioeconomic variation in cities can have strong unintended consequences for the ecology and evolution of trophic interactions.
Collapse
Affiliation(s)
- Ella Martin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Samer El-Galmady
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Li M, Masri S, Chiu CH, Sun Y, Wu J. Mapping wild vascular plant species diversity in urban areas in California using crowdsourcing data by regression kriging: Examining socioeconomic disparities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166995. [PMID: 37717761 PMCID: PMC10947671 DOI: 10.1016/j.scitotenv.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Biodiversity is crucial for human health, but previous methods of measuring biodiversity require intensive resources and have other limitations. Crowdsourced datasets from citizen scientists offer a cost-effective solution for characterizing biodiversity on a large spatial scale. This study has two aims: 1) to generate fine-resolution plant species diversity maps in California urban areas using crowdsourced data and extrapolation methods; and 2) to examine their associations with sociodemographic factors and identify subpopulations with low biodiversity exposure. We used iNaturalist observations from 2019 to 2022 to calculate species diversity metrics by exploring the sampling completeness in a 5 × 5-km2 grid and then computing species diversity metrics for grid cells with at least 80 % sample completeness (841 out of 4755 grid cells). A generalized additive model with ordinary kriging (GAM OK) provided moderately reliable estimates, with correlations of 0.64-0.66 between observed and extrapolated metrics, relative mean absolute errors of 21 %-23 %, and relative root mean squared errors of 27 %-30 % for grid cells with ≥80 % sample completeness from 10-fold cross-validation. GAM OK was further applied to extrapolate species diversity metrics from saturated grid cells (N = 841) to the remaining grid cells with <80 % sample completeness (N = 3914) and generate diversity maps that cover the grid. Further, generalized linear mixed models were used to examine the associations between species diversity and sociodemographic indicators at census tract level. The wild vascular plant species diversity metrics were inversely associated with neighborhood socioeconomic status (i.e., unemployment, linguistic isolation, educational attainment, and poverty rate). Minority populations (i.e., African American, Asian American, and Hispanic) and children had significantly lower diversity exposure in their neighborhoods. Crowdsourcing data offers a cost-effective solution for characterizing large-scale biodiversity in urban areas.
Collapse
Affiliation(s)
- Mengyi Li
- Department of Disease Prevention, Program in Public Health, University of California, Irvine, CA, USA
| | - Shahir Masri
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Chun-Huo Chiu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yi Sun
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA; Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Ellis-Soto D, Chapman M, Locke DH. Historical redlining is associated with increasing geographical disparities in bird biodiversity sampling in the United States. Nat Hum Behav 2023; 7:1869-1877. [PMID: 37679441 DOI: 10.1038/s41562-023-01688-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2023] [Indexed: 09/09/2023]
Abstract
Historic segregation and inequality are critical to understanding modern environmental conditions. Race-based zoning policies, such as redlining in the United States during the 1930s, are associated with racial inequity and adverse multigenerational socioeconomic levels in income and education, and disparate environmental characteristics including tree canopy cover across urban neighbourhoods. Here we quantify the association between redlining and bird biodiversity sampling density and completeness-two critical metrics of biodiversity knowledge-across 195 cities in the United States. We show that historically redlined neighbourhoods remain the most undersampled urban areas for bird biodiversity today, potentially impacting conservation priorities and propagating urban environmental inequities. The disparity in sampling across redlined neighbourhood grades increased by 35.6% over the past 20 years. We identify specific urban areas in need of increased bird biodiversity sampling and discuss possible strategies for reducing uncertainty and increasing equity of sampling of biodiversity in urban areas. Our findings highlight how human behaviour and past social, economic and political conditions not just segregate our built environment but may also leave a lasting mark on the digital information we have about urban biodiversity.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Melissa Chapman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Dexter H Locke
- Baltimore Field Station, Northern Research Station, USDA Forest Service, Baltimore, MD, USA
| |
Collapse
|
8
|
Ellis-Soto D, Oliver RY, Brum-Bastos V, Demšar U, Jesmer B, Long JA, Cagnacci F, Ossi F, Queiroz N, Hindell M, Kays R, Loretto MC, Mueller T, Patchett R, Sims DW, Tucker MA, Ropert-Coudert Y, Rutz C, Jetz W. A vision for incorporating human mobility in the study of human-wildlife interactions. Nat Ecol Evol 2023; 7:1362-1372. [PMID: 37550509 DOI: 10.1038/s41559-023-02125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
| | - Ruth Y Oliver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA.
| | - Vanessa Brum-Bastos
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental Sciences, Wroclaw, Poland
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | - Brett Jesmer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Jed A Long
- Department of Geography & Environment, Centre for Animals on the Move, Western University, London, Ontario, Canada
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- National Biodiversity Future Center S.C.A.R.L., Palermo, Italy
| | - Federico Ossi
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado/BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Vairão, Portugal
- Marine Biological Association, Plymouth, UK
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Roland Kays
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Dept Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Matthias-Claudio Loretto
- Ecosystem Dynamics and Forest Management Group, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Department of Migration, Max-Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt (Main), Germany
- Department of Biological Sciences, Goethe University, Frankfurt (Main), Germany
| | - Robert Patchett
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - David W Sims
- Marine Biological Association, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, La Rochelle Université - CNRS, Villiers en Bois, France
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|