1
|
Tahami MS, Vargas-Chavez C, Poikela N, Coronado-Zamora M, González J, Kankare M. Transposable elements in Drosophila montana from harsh cold environments. Mob DNA 2024; 15:18. [PMID: 39354634 PMCID: PMC11445987 DOI: 10.1186/s13100-024-00328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates. RESULTS Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints. CONCLUSIONS Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
Collapse
Affiliation(s)
- Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
2
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Yusuf LH, Tyukmaeva V, Hoikkala A, Ritchie MG. Divergence and introgression among the virilis group of Drosophila. Evol Lett 2022; 6:537-551. [PMID: 36579165 PMCID: PMC9783487 DOI: 10.1002/evl3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.
Collapse
Affiliation(s)
- Leeban H. Yusuf
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| | - Venera Tyukmaeva
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Anneli Hoikkala
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
4
|
Chekunova AI, Sorokina SY, Sivoplyas EA, Bakhtoyarov GN, Proshakov PA, Fokin AV, Melnikov AI, Kulikov AM. Episodes of Rapid Recovery of the Functional Activity of the ras85D Gene in the Evolutionary History of Phylogenetically Distant Drosophila Species. Front Genet 2022; 12:807234. [PMID: 35096018 PMCID: PMC8790561 DOI: 10.3389/fgene.2021.807234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the ras85D gene in different lineages of the genus Drosophila, as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin. In the process, we substantiate hypotheses about the selection of promoter elements from a number of frequently repeated motifs with different degrees of degeneracy in the ancestral sequence, as well as about the restoration of the minimum required set of regulatory sequences using a conversion mechanism or similar.
Collapse
Affiliation(s)
- A I Chekunova
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S Yu Sorokina
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - E A Sivoplyas
- Department of Biochemistry, Molecular Biology and Genetics, Institute of Biology and Chemistry of Moscow Pedagogical State University (MPGU), Moscow, Russia
| | - G N Bakhtoyarov
- Laboratory of Genetics of DNA Containing Viruses, Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
| | - P A Proshakov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A V Fokin
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A I Melnikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kulikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Hoikkala A, Poikela N. Adaptation and ecological speciation in seasonally varying environments at high latitudes: Drosophila virilis group. Fly (Austin) 2022; 16:85-104. [PMID: 35060806 PMCID: PMC8786326 DOI: 10.1080/19336934.2021.2016327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living in high latitudes and altitudes sets specific requirements on species’ ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also lead to ecological speciation through habitat isolation or by inducing changes in traits that influence assortative mating. In this review, we explain how the unique time-measuring systems of Drosophila virilis group species have enabled the species to occupy high latitudes and how the traits involved in species reproduction and survival exhibit strong linkage with latitudinally varying photoperiodic and climatic conditions. We also describe variation in reproductive barriers between the populations of two species with overlapping distributions and show how local adaptation and the reinforcement of prezygotic barriers have created partial reproductive isolation between conspecific populations. Finally, we consider the role of species-specific chromosomal inversions and the X chromosome in the development of reproductive barriers between diverging lineages.
Collapse
Affiliation(s)
- Anneli Hoikkala
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Noora Poikela
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Mérel V, Boulesteix M, Fablet M, Vieira C. Transposable elements in Drosophila. Mob DNA 2020; 11:23. [PMID: 32636946 PMCID: PMC7334843 DOI: 10.1186/s13100-020-00213-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Drosophila has been studied as a biological model for many years and many discoveries in biology rely on this species. Research on transposable elements (TEs) is not an exception. Drosophila has contributed significantly to our knowledge on the mechanisms of transposition and their regulation, but above all, it was one of the first organisms on which genetic and genomic studies of populations were done. In this review article, in a very broad way, we will approach the TEs of Drosophila with a historical hindsight as well as recent discoveries in the field.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
7
|
Meiotic Chromosome Contacts as a Plausible Prelude for Robertsonian Translocations. Genes (Basel) 2020; 11:genes11040386. [PMID: 32252399 PMCID: PMC7230836 DOI: 10.3390/genes11040386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.
Collapse
|
8
|
Comparative Genomic In Situ Hybridization and the Possible Role of Retroelements in the Karyotypic Evolution of Three Akodontini Species. Int J Genomics 2017; 2017:5935380. [PMID: 28900618 PMCID: PMC5576401 DOI: 10.1155/2017/5935380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/14/2017] [Accepted: 05/03/2017] [Indexed: 01/21/2023] Open
Abstract
South American Akodontini rodents are characterized by a large number of chromosome rearrangements. Among them, the genus Akodon has been extensively analyzed with classical and molecular cytogenetics, which allowed the identification of a large number of intra- and interspecific chromosomal variation due to Robertsonian rearrangements, pericentric inversions, and heterochromatin additions/deletions. In order to shed some light on the cause of these rearrangements, we comparatively analyzed the karyotypes of three Akodontini species, Akodon cursor (2n = 14, FN = 19), A. montensis (2n = 24, FN = 42), and Necromys lasiurus (2n = 34, FN = 34), after GTG- and CBG-banding. The karyotypes differed by Robertsonian rearrangements, pericentric inversions, centromere repositioning, and heterochromatin variation. Genome comparisons were performed through interspecific fluorescent in situ hybridization (FISH) with total genomic DNAs of each species as probes (GISH). Our results revealed considerable conservation of the euchromatic portions among the three karyotypes suggesting that they mostly differ in their heterochromatic regions. FISH was also performed to assess the distribution of telomeric sequences, long and short interspersed repetitive elements (LINE-1 and B1 SINE) and of the endogenous retrovirus mysTR in the genomes of the three species. The results led us to infer that transposable elements have played an important role in the enormous chromosome variation found in Akodontini.
Collapse
|
9
|
|
10
|
Naseeb S, Carter Z, Minnis D, Donaldson I, Zeef L, Delneri D. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Mol Biol Evol 2016; 33:1679-96. [PMID: 26929245 PMCID: PMC4915352 DOI: 10.1093/molbev/msw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Collapse
Affiliation(s)
- Samina Naseeb
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Zorana Carter
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Minnis
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Donaldson
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence. Genetics 2014; 199:73-83. [PMID: 25406466 DOI: 10.1534/genetics.114.172072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12-13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.
Collapse
|
12
|
Evgen'ev MB. What happens when Penelope comes?: An unusual retroelement invades a host species genome exploring different strategies. Mob Genet Elements 2014; 3:e24542. [PMID: 23914310 PMCID: PMC3681739 DOI: 10.4161/mge.24542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are ubiquitous residents in eukaryotic genomes. They can cause dramatic changes in gene expression and lead to gross rearrangements of chromosome structure, providing the basis for rapid evolution. The virilis species group of Drosophila contains certain species that can be crossed under experimental conditions and their phylogeny is thoroughly investigated. We have shown that Drosophila virilis, the most primitive karyotypically and probably the ancestral species of the group, is in the process of colonization by a very unusual retroelement Penelope which apparently repeatedly invaded the species of the group in the past. However, the molecular mechanisms and evolutionary consequences of such invasions are poorly understood. In this commentary, we discuss the implications of our recent investigation into the response of the RNA silencing system to Penelope invasion of a new host genome which can be achieved in different ways.
Collapse
Affiliation(s)
- Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia ; Institute of Cell Biophysics; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
13
|
Rossato DO, Ludwig A, Deprá M, Loreto ELS, Ruiz A, Valente VLS. BuT2 is a member of the third major group of hAT transposons and is involved in horizontal transfer events in the genus Drosophila. Genome Biol Evol 2014; 6:352-65. [PMID: 24459285 PMCID: PMC3942097 DOI: 10.1093/gbe/evu017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 12/24/2022] Open
Abstract
The hAT superfamily comprises a large and diverse array of DNA transposons found in all supergroups of eukaryotes. Here we characterized the Drosophila buzzatii BuT2 element and found that it harbors a five-exon gene encoding a 643-aa putatively functional transposase. A phylogeny built with 85 hAT transposases yielded, in addition to the two major groups already described, Ac and Buster, a third one comprising 20 sequences that includes BuT2, Tip100, hAT-4_BM, and RP-hAT1. This third group is here named Tip. In addition, we studied the phylogenetic distribution and evolution of BuT2 by in silico searches and molecular approaches. Our data revealed BuT2 was, most often, vertically transmitted during the evolution of genus Drosophila being lost independently in several species. Nevertheless, we propose the occurrence of three horizontal transfer events to explain its distribution and conservation among species. Another aspect of BuT2 evolution and life cycle is the presence of short related sequences, which contain similar 5' and 3' regions, including the terminal inverted repeats. These sequences that can be considered as miniature inverted repeat transposable elements probably originated by internal deletion of complete copies and show evidences of recent mobilization.
Collapse
Affiliation(s)
- Dirleane Ottonelli Rossato
- Programa de Pós-Graduação em
Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto
Carlos Chagas (ICC), Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Maríndia Deprá
- Programa de Pós-Graduação em Biologia
Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
- Departamento de Genética, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elgion L. S. Loreto
- Programa de Pós-Graduação em
Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biologia, Universidade Federal de Santa
Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Alfredo Ruiz
- Departament de Genètica i Microbiologia, Facultat
de Biociènces, Universitat Autònoma de Barcelona, Spain
| | - Vera L. S. Valente
- Programa de Pós-Graduação em Biologia
Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
- Departamento de Genética, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em
Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Abdurashitov MA, Gonchar DA, Chernukhin VA, Tomilov VN, Tomilova JE, Schostak NG, Zatsepina OG, Zelentsova ES, Evgen'ev MB, Degtyarev SKH. Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome. BMC Genomics 2013; 14:771. [PMID: 24209985 PMCID: PMC3833285 DOI: 10.1186/1471-2164-14-771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 10/28/2013] [Indexed: 12/29/2022] Open
Abstract
Background Previously, we developed a simple method for carrying out a restriction enzyme analysis of eukaryotic DNA in silico, based on the known DNA sequences of the genomes. This method allows the user to calculate lengths of all DNA fragments that are formed after a whole genome is digested at the theoretical recognition sites of a given restriction enzyme. A comparison of the observed peaks in distribution diagrams with the results from DNA cleavage using several restriction enzymes performed in vitro have shown good correspondence between the theoretical and experimental data in several cases. Here, we applied this approach to the annotated genome of Drosophila virilis which is extremely rich in various repeats. Results Here we explored the combined approach to perform the restriction analysis of D. virilis DNA. This approach enabled to reveal three abundant medium-sized tandem repeats within the D. virilis genome. While the 225 bp repeats were revealed previously in intergenic non-transcribed spacers between ribosomal genes of D. virilis, two other families comprised of 154 bp and 172 bp repeats were not described. Tandem Repeats Finder search demonstrated that 154 bp and 172 bp units are organized in multiple clusters in the genome of D. virilis. Characteristically, only 154 bp repeats derived from Helitron transposon are transcribed. Conclusion Using in silico digestion in combination with conventional restriction analysis and sequencing of repeated DNA fragments enabled us to isolate and characterize three highly abundant families of medium-sized repeats present in the D. virilis genome. These repeats comprise a significant portion of the genome and may have important roles in genome function and structural integrity. Therefore, we demonstrated an approach which makes possible to investigate in detail the gross arrangement and expression of medium-sized repeats basing on sequencing data even in the case of incompletely assembled and/or annotated genomes.
Collapse
|
15
|
Arkhipova IR, Rodriguez F. Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polyploids. Cytogenet Genome Res 2013; 140:295-311. [PMID: 23899811 DOI: 10.1159/000352069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are discrete genetic units that have the ability to change their location within chromosomal DNA, and constitute a major and rapidly evolving component of eukaryotic genomes. They can be subdivided into 2 distinct types: retrotransposons, which use an RNA intermediate for transposition, and DNA transposons, which move only as DNA. Rapid advances in genome sequencing significantly improved our understanding of TE roles in genome shaping and restructuring, and studies of transcriptomes and epigenomes shed light on the previously unknown molecular mechanisms underlying genetic and epigenetic TE controls. Knowledge of these control systems may be important for better understanding of reticulate evolution and speciation in the context of bringing different genomes together by hybridization and perturbing the established regulatory balance by ploidy changes. See also sister article focusing on plants by Bento et al. in this themed issue.
Collapse
Affiliation(s)
- I R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA. iarkhipova @ mbl.edu
| | | |
Collapse
|
16
|
Koyama T, Kondo H, Aoki T, Hirono I. Identification of two Penelope-like elements with different structures and chromosome localization in kuruma shrimp genome. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:115-123. [PMID: 22825394 DOI: 10.1007/s10126-012-9474-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
Penelope, originally found as a key element responsible for the hybrid dysgenesis in Drosophila virilis, has been widely conserved throughout eukaryotic genomes. In other organisms, they are often referred to as Penelope-like elements or PLEs. In this study, we found two types of PLEs, designated MjPLE01 and MjPLE02, from kuruma shrimp, Marsupenaeus japonicus. There was no observed nucleotide similarity between MjPLE01 and 02, and both elements differed from each other in terms of their structure; MjPLE02 has a distinctive endonuclease (EN) domain at the C-terminus while MjPLE01 do not. A phylogenetic tree that includes publicly available PLEs and TERTs showed that MjPLE01 and 02 were closely related to Coprina elements, which have been reported as an EN-deficient PLE, and to Penelope-Poseidon group, which possess an EN domain, respectively. Genomic Southern blot analysis using MjPLE01 as a probe showed several multiple bands that differ among individual shrimps. On the other hand, two major identical bands were observed when MjPLE02 was used. Colony hybridization showed co-localization of MjPLE01 and GGTTA repeats, suggesting that MjPLE01 might be prevalent in subtelomeric regions of kuruma shrimp genome. These results suggest that the kuruma shrimp genome has at least two types of PLEs with different domain compositions, phylogenetic positions, and probably chromosomeal localization. Such distinctive types of PLEs in an organism have never been described and hence could be a potential source to understand how multiple PLE types evolved.
Collapse
Affiliation(s)
- Takashi Koyama
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
17
|
Rozhkov NV, Schostak NG, Zelentsova ES, Yushenova IA, Zatsepina OG, Evgen'ev MB. Evolution and dynamics of small RNA response to a retroelement invasion in Drosophila. Mol Biol Evol 2012; 30:397-408. [PMID: 23079419 DOI: 10.1093/molbev/mss241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although small RNAs efficiently control transposition activity of most transposons in the host genome, such an immune system is not always applicable against a new transposon's invasions. Here, we explored a possibility to introduce potentially mobile copy of the Penelope retroelement previously implicated in hybrid dysgenesis syndrome in Drosophila virilis into the genomes of two distant Drosophila species. The consequences of such introduction were monitored at different phases after experimental colonization as well as in D. virilis species, which is apparently in the process of ongoing Penelope invasion. We investigated the expression of Penelope and biogenesis of Penelope-derived small RNAs in D. virilis and D. melanogaster strains originally lacking active copies of this element after experimental Penelope invasion. These strains were transformed by constructs containing intact Penelope copies. We show that immediately after transformation, which imitates the first stage of retroelement invasion, Penelope undergoes transposition predominantly in somatic tissues, and may produce siRNAs that are apparently unable to completely silence its activity. However, at the later stages of colonization Penelope copies may jump into one of the piRNA-clusters, which results in production of homologous piRNAs that are maternally deposited and can silence euchromatic transcriptionally active copies of Penelope in trans and, hence, prevent further amplification of the invader in the host genome. Intact Penelope copies and different classes of Penelope-derived small RNAs were found in most geographical strains of D. virilis collected throughout the world. Importantly, all strains of this species containing full-length Penelope tested do not produce gonadal sterility in dysgenic crosses and, hence, exhibit neutral cytotype. To understand whether RNA interference mechanism able to target Penelope operates in related species of the virilis group, we correlated the presence of full-length and potentially active Penelope with the occurrence of piRNAs homologous to this transposable element in the ovaries of species comprising the group. It was demonstrated that Penelope-derived piRNAs are present in all virilis group species containing full-length but transcriptionally silent copies of this element that probably represent the remnants of its previous invasions taking place in the course of the virilis species divergent evolution.
Collapse
|
18
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|
19
|
Rozhkov NV, Zelentsova ES, Shostak NG, Evgen'ev MB. Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition. PLoS One 2011; 6:e21883. [PMID: 21779346 PMCID: PMC3136932 DOI: 10.1371/journal.pone.0021883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/10/2011] [Indexed: 11/18/2022] Open
Abstract
Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level.
Collapse
|
20
|
Valente G, Mazzuchelli J, Ferreira I, Poletto A, Fantinatti B, Martins C. Cytogenetic Mapping of the Retroelements Rex1, Rex3 and Rex6 among Cichlid Fish: New Insights on the Chromosomal Distribution of Transposable Elements. Cytogenet Genome Res 2011; 133:34-42. [DOI: 10.1159/000322888] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 11/19/2022] Open
|
21
|
Zacharopoulou A, Augustinos AA, Sayed WAA, Robinson AS, Franz G. Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Genetica 2010; 139:79-90. [PMID: 20844937 DOI: 10.1007/s10709-010-9495-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022]
Abstract
The Oriental fruit fly, Batrocera dorsalis s.s. (Hendel) is one of the most destructive agricultural pests, belonging to a large group of difficult to distinguish morphologically species, referred as the B. dorsalis complex. We report here a cytogenetic analysis of two laboratory strains of the species and provide a photographic polytene chromosome map from larval salivary glands. The mitotic complement consists of six chromosome pairs including a heteromorphic sex (XX/XY) chromosome pair. Analysis of the polytene complement has shown a total of five polytene chromosomes (10 polytene arms) that correspond to the five autosomes. The most important landmarks of each polytene chromosome and characteristic asynapsis at a specific chromosomal region are presented and discussed. Chromosomal homology between B. dorsalis and Ceratitis capitata has been determined by comparing chromosome banding patterns. The detection of chromosome inversions in both B. dorsalis strains is shown and discussed. Our results show that the polytene maps presented here are suitable for cytogenetic analysis of this species and can be used for comparative studies among species of the Tephritidae family. They also provide a diagnostic tool that could accelerate species identification within the B. dorsalis complex and could shed light on the ongoing speciation in this complex. Polytene chromosome maps can facilitate the development of biological control methods and support the genome mapping project of the species that is currently in progress.
Collapse
Affiliation(s)
- Antigone Zacharopoulou
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Agency's Laboratories, Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
22
|
Rozhkov NV, Aravin AA, Zelentsova ES, Schostak NG, Sachidanandam R, McCombie WR, Hannon GJ, Evgen'ev MB. Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. RNA (NEW YORK, N.Y.) 2010; 16:1634-45. [PMID: 20581131 PMCID: PMC2905761 DOI: 10.1261/rna.2217810] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Colonization of a host by an active transposon can increase mutation rates or cause sterility, a phenotype termed hybrid dysgenesis. As an example, intercrosses of certain Drosophila virilis strains can produce dysgenic progeny. The Penelope element is present only in a subset of laboratory strains and has been implicated as a causative agent of the dysgenic phenotype. We have also introduced Penelope into Drosophila melanogaster, which are otherwise naive to the element. We have taken advantage of these natural and experimentally induced colonization processes to probe the evolution of small RNA pathways in response to transposon challenge. In both species, Penelope was predominantly targeted by endo-small-interfering RNAs (siRNAs) rather than by piwi-interacting RNAs (piRNAs). Although we do observe correlations between Penelope transcription and dysgenesis, we could not correlate differences in maternally deposited Penelope piRNAs with the sterility of progeny. Instead, we found that strains that produced dysgenic progeny differed in their production of piRNAs from clusters in subtelomeric regions, possibly indicating that changes in the overall piRNA repertoire underlie dysgenesis. Considered together, our data reveal unexpected plasticity in small RNA pathways in germ cells, both in the character of their responses to invading transposons and in the piRNA clusters that define their ability to respond to mobile elements.
Collapse
|
23
|
|
24
|
Hoffmann AA, Rieseberg LH. Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008; 39:21-42. [PMID: 20419035 DOI: 10.1146/annurev.ecolsys.39.110707.173532] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is a growing appreciation that chromosome inversions affect rates of adaptation, speciation, and the evolution of sex chromosomes. Comparative genomic studies have identified many new paracentric inversion polymorphisms. Population models suggest that inversions can spread by reducing recombination between alleles that independently increase fitness, without epistasis or coadaptation. Areas of linkage disequilibrium extend across large inversions but may be interspersed by areas with little disequilibrium. Genes located within inversions are associated with a variety of traits including those involved in climatic adaptation. Inversion polymorphisms may contribute to speciation by generating underdominance owing to inviable gametes, but an alternative view gaining support is that inversions facilitate speciation by reducing recombination, protecting genomic regions from introgression. Likewise, inversions may facilitate the evolution of sex chromosomes by reducing recombination between sex determining alleles and alleles with sex-specific effects. However, few genes within inversions responsible for fitness effects or speciation have been identified.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Parkville, Victoria 3010 Australia;
| | | |
Collapse
|
25
|
Bhutkar A, Gelbart WM, Smith TF. Inferring genome-scale rearrangement phylogeny and ancestral gene order: a Drosophila case study. Genome Biol 2008; 8:R236. [PMID: 17996033 PMCID: PMC2258185 DOI: 10.1186/gb-2007-8-11-r236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 09/17/2007] [Indexed: 01/01/2023] Open
Abstract
A simple, fast, and biologically-inspired computational approach to infer genome-scale rearrangement phylogeny and ancestral gene order has been developed and applied to eight Drosophila genomes, providing insights into evolutionary chromosomal dynamics. A simple, fast, and biologically inspired computational approach for inferring genome-scale rearrangement phylogeny and ancestral gene order has been developed. This has been applied to eight Drosophila genomes. Existing techniques are either limited to a few hundred markers or a small number of taxa. This analysis uses over 14,000 genomic loci and employs discrete elements consisting of pairs of homologous genetic elements. The results provide insight into evolutionary chromosomal dynamics and synteny analysis, and inform speciation studies.
Collapse
Affiliation(s)
- Arjun Bhutkar
- BioMolecular Engineering Research Center, Boston University, Cummington St, Boston, MA 02215, USA.
| | | | | |
Collapse
|
26
|
Abstract
Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.
Collapse
|
27
|
|
28
|
Cirulli ET, Noor MAF. Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae. ACTA ACUST UNITED AC 2006; 98:111-4. [PMID: 17194790 DOI: 10.1093/jhered/esl065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.
Collapse
Affiliation(s)
- Elizabeth T Cirulli
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
29
|
García Guerreiro MP, Fontdevila A. The evolutionary history of Drosophila buzzatii. XXXVI. Molecular structural analysis of Osvaldo retrotransposon insertions in colonizing populations unveils drift effects in founder events. Genetics 2006; 175:301-10. [PMID: 17151248 PMCID: PMC1775019 DOI: 10.1534/genetics.106.064378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work on transposable element distribution in colonizing populations of Drosophila buzzatii revealed a high frequency of occupancy in several chromosomal sites. Two explanatory hypotheses were advanced: the founder hypothesis, by which founder genetic drift was responsible, and the unstable hypothesis that assigns this unusual distribution to bursts of transposition toward some chromosomal sites. Here, we study the molecular structure of three euchromatic Osvaldo clones isolated from sites occupied at high (A4 and B9) and low frequency (B4) in colonizing populations, to test these hypotheses. Large insertions, duplications, and indels in the Osvaldo coding region and LTR were detected in the A4 clone and a truncated Osvaldo with many substitutions was found in the B9 clone. These altered sequences indicate that the two copies of this retroelement are precolonization insertions. Interestingly, the LTR of the A4 clone and the reverse transcriptase region of B9 show identical sequences in all colonizing populations indicating, most probably, that they are identical by descent. Moreover, Osvaldo is inserted at the same nucleotide site in all colonizing populations. On the other hand an almost identical LTR sequence, except by 1 base deletion, was found in the B4 clone compared to the canonical active Osvaldo element. These results suggest that Osvaldo copies in highly occupied sites are, most probably, identical by descent and strongly favor the founder hypothesis. On the other hand, low-insertion-frequency sites could represent recent transposition events. This work emphasizes the importance of molecular population studies to disentangle the effects of genetic drift and transposition in colonization.
Collapse
Affiliation(s)
- María Pilar García Guerreiro
- Grup de Biología Evolutiva, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
30
|
García Guerreiro MP, Fontdevila A. Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii. Mol Genet Genomics 2006; 277:83-95. [PMID: 17039376 DOI: 10.1007/s00438-006-0174-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element.
Collapse
Affiliation(s)
- M P García Guerreiro
- Departament de Genètica i Microbiologia, Edifici C. Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.
| | | |
Collapse
|
31
|
Morales-Hojas R, Päällysaho S, Vieira CP, Hoikkala A, Vieira J. Comparative polytene chromosome maps of D. montana and D. virilis. Chromosoma 2006; 116:21-7. [PMID: 16906413 DOI: 10.1007/s00412-006-0075-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 10/24/2022]
Abstract
Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
32
|
Schibler L, Roig A, Mahe MF, Laurent P, Hayes H, Rodolphe F, Cribiu EP. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution. BMC Genomics 2006; 7:194. [PMID: 16882342 PMCID: PMC3225868 DOI: 10.1186/1471-2164-7-194] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 08/01/2006] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs) have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse. RESULTS The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes. CONCLUSION Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.
Collapse
Affiliation(s)
- Laurent Schibler
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Anne Roig
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Marie-Françoise Mahe
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Pascal Laurent
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Hélène Hayes
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - François Rodolphe
- Mathématique, informatique et génome, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas Cedex, France
| | - Edmond P Cribiu
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| |
Collapse
|
33
|
Morales-Hojas R, Vieira CP, Vieira J. The Evolutionary History of the Transposable Element Penelope in the Drosophila virilis Group of Species. J Mol Evol 2006; 63:262-73. [PMID: 16830099 DOI: 10.1007/s00239-005-0213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
We have used phylogenetic techniques to study the evolutionary history of the Penelope transposable element in the Drosophila virilis species group. Two divergent types of Penelope have been detected, one previously described, clade I, and a new one which we have termed clade III. The phylogeny of some copies of the Penelope clade I element was partially consistent with the species phylogeny of the D. montana subphylad, suggesting cospeciation and allowing the estimation of the evolutionary rate of Penelope. Divergence times of elements found in different species are younger than the age of the species, suggesting horizontal transfer events.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Molecular Evolution Laboratory, IBMC, University of Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | | | | |
Collapse
|
34
|
Schulze SR, McAllister BF, Sinclair DAR, Fitzpatrick KA, Marchetti M, Pimpinelli S, Honda BM. Heterochromatic genes in Drosophila: a comparative analysis of two genes. Genetics 2006; 173:1433-45. [PMID: 16648646 PMCID: PMC1526689 DOI: 10.1534/genetics.106.056069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 04/29/2006] [Indexed: 01/04/2023] Open
Abstract
Centromeric heterochromatin comprises approximately 30% of the Drosophila melanogaster genome, forming a transcriptionally repressive environment that silences euchromatic genes juxtaposed nearby. Surprisingly, there are genes naturally resident in heterochromatin, which appear to require this environment for optimal activity. Here we report an evolutionary analysis of two genes, Dbp80 and RpL15, which are adjacent in proximal 3L heterochromatin of D. melanogaster. DmDbp80 is typical of previously described heterochromatic genes: large, with repetitive sequences in its many introns. In contrast, DmRpL15 is uncharacteristically small. The orthologs of these genes were examined in D. pseudoobscura and D. virilis. In situ hybridization and whole-genome assembly analysis show that these genes are adjacent, but not centromeric in the genome of D. pseudoobscura, while they are located on different chromosomal elements in D. virilis. Dbp80 gene organization differs dramatically among these species, while RpL15 structure is conserved. A bioinformatic analysis in five additional Drosophila species demonstrates active repositioning of these genes both within and between chromosomal elements. This study shows that Dbp80 and RpL15 can function in contrasting chromatin contexts on an evolutionary timescale. The complex history of these genes also provides unique insight into the dynamic nature of genome evolution.
Collapse
Affiliation(s)
- Sandra R Schulze
- Department of Molecular Biology snd Biochemistry, Simon Fraser University, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Casals F, González J, Ruiz A. Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6. Chromosoma 2006; 115:403-12. [PMID: 16773395 DOI: 10.1007/s00412-006-0071-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 11/29/2022]
Abstract
The abundance and chromosomal distribution of six class-II transposable elements (TEs) of Drosophila buzzatii have been analyzed by Southern blotting and in situ hybridization. These six transposons had been previously found at the breakpoints of inversions 2j and 2q ( 7 ) of D. buzzatii. These two polymorphic inversions were generated by an ectopic recombination event between two copies of Galileo, a Foldback element. The four breakpoints became hotspots for TE insertions after the generation of the inversion and the transposons analyzed in this work are considered to be secondary invaders of these regions. Insertions of the six transposons are present in the euchromatin but show an increased density in the pericentromeric euchromatin-heterochromatin transition region and the dot chromosome. They are also more abundant in the inverted segments of chromosome 2 rearrangements. We further observed that the accumulation of TE insertions varies between elements and is correlated between dot, proximal regions, and inverted segments. These observations fully agree with previous data in Drosophila melanogaster and support recombination rate as the chief force explaining the chromosomal distribution of TEs.
Collapse
Affiliation(s)
- Ferran Casals
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
36
|
Belyayev A, Raskina O, Nevo E. Variability of the chromosomal distribution of Ty3-gypsy retrotransposons in the populations of two wild Triticeae species. Cytogenet Genome Res 2005; 109:43-9. [PMID: 15753557 DOI: 10.1159/000082380] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 02/03/2004] [Indexed: 11/19/2022] Open
Abstract
Here, we report data on the population variability of Ty3-gypsy retrotransposons in genomes of Aegilops speltoides (2n = 2x = 14) and Hordeum spontaneum (2n = 2x = 14). Based on the sequence analysis or reverse transcriptase (RT) gene conserved domains, two groups of elements were recognized. Elements of Group I show relatedness to such a known element as RIRE2, and elements of Group II show relatedness to Fatima and Cereba. Cloned and sequenced fragments of Ty3-gypsy RT that show the closest relatedness to known elements (Fatima and RIRE2) were used as probes for fluorescent in situ hybridization (FISH). FISH experiments revealed mini-cluster organization of the Ty3-gypsy element chromosomal distribution in wild Triticeae species. Mini-clusters can be divided into three categories according to their intraspecific stability: (i) stable species-specific clusters that are mainly adjusted to the regions of rRNA genes; (ii) variable clusters that represent 68% of clusters in the genome of Ae. speltoides and 20% in the genome of H. spontaneum; and (iii) population-specific clusters that are mainly insertions into centromeric central domains of different chromosomes and the majority of these insertions were detected in populations with hot, dry environments. Significant interpopulation variability of Ty3-gypsy element chromosomal distribution in the Ae. speltoides genome contrasts with the uniform genome of H. spontaneum and may reflect differences in adaptive strategies between investigated species.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel.
| | | | | |
Collapse
|
37
|
Hedges DJ, Cordaux R, Xing J, Witherspoon DJ, Rogers AR, Jorde LB, Batzer MA. Modeling the amplification dynamics of human Alu retrotransposons. PLoS Comput Biol 2005; 1:e44. [PMID: 16201008 PMCID: PMC1239904 DOI: 10.1371/journal.pcbi.0010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 08/24/2005] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA) that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human–chimpanzee divergence. Nearly 50% of the human genome is composed of mobile elements. While much of this sequence consists of inactive “fossil” elements that are no longer actively moving or generating new copies, three families are currently proliferating in human genomes. Among these, the Alu lineage has reached a copy number of over 1 million and alone accounts for approximately 10% of the genome. While considerable evidence has been gathered concerning the underlying biological mechanisms of Alu mobilization and proliferation, a detailed understanding of Alu amplification history is currently lacking. Researchers are aware, for example, that several thousand Alu elements have inserted within the human genome since the divergence of humans and chimpanzees, but how those insertions were distributed over this ~6-million-year time period is currently unknown. In this work, the authors introduce a simulation framework that seeks to incorporate both sequence diversity and empirically gathered population data from human Alu elements, in order to provide a better understanding of the last several million years of human Alu evolution. The results suggest that a rapid explosion of Alu amplification at the time of the human–chimpanzee divergence is unlikely. Therefore, it is improbable that an increase in Alu retrotransposition activity was involved in the speciation of humans and chimpanzees.
Collapse
Affiliation(s)
- Dale J Hedges
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Richard Cordaux
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jinchuan Xing
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - David J Witherspoon
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Alan R Rogers
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Mark A Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Evgen'ev MB, Arkhipova IR. Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 2005; 110:510-21. [PMID: 16093704 DOI: 10.1159/000084984] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/27/2004] [Indexed: 11/19/2022] Open
Abstract
Here we describe a new class of retroelements termed PLE (Penelope-like elements). The only transpositionally active representative of this lineage found so far has been isolated from Drosophila virilis. This element, Penelope, is responsible for the hybrid dysgenesis syndrome in this species, characterized by simultaneous mobilization of several unrelated TE families in the progeny of dysgenic crosses. Several lines of evidence favor the hypothesis of recent Penelope invasion into D. virilis. Moreover, when D. virilisPenelope was introduced by P element-mediated transformation into the genome of D. melanogaster, it underwent extensive amplification in the new host and induced several traits of the dysgenesis syndrome, including gonadal atrophy and numerous mutations. The single ORF encoded by PLE consists of two principal domains: reverse transcriptase (RT) and endonuclease (EN), which is similar to GIY-YIG intron-encoded endonucleases. With the appearance of a large number of PLEs in genome databases from diverse eukaryotes, including amoebae, fungi, cnidarians, rotifers, flatworms, roundworms, fish, amphibia, and reptilia, it becomes possible to resolve their phylogenetic relationships with other RT groups with a greater degree of confidence. On the basis of their peculiar structural features, distinct phylogenetic placement, and structure of transcripts, we conclude that PLE constitute a novel class of eukaryotic retroelements, different from non-LTR and LTR retrotransposons.
Collapse
Affiliation(s)
- M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Moscow, Russia.
| | | |
Collapse
|
39
|
Zhang J, Peterson T. Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 2005; 167:1929-37. [PMID: 15342530 PMCID: PMC1471009 DOI: 10.1534/genetics.103.026229] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In classical "cut-and-paste" transposition, transposons are excised from donor sites and inserted at new locations. We have identified an alternative pathway in which transposition involves the 5' end of an intact Ac element and the 3' end of a nearby terminally deleted fAc (fractured Ac). The Ac and fAc elements are inserted at the maize p1 locus on chromosome 1s in the same orientation; the adjacent ends of the separate elements are thus in reversed orientation with respect to each other and are separated by a distance of approximately 13 kb. Transposition involving the two ends in reversed orientation generates inversions, deletions, and a novel type of local rearrangement. The rearrangement breakpoints are bounded by the characteristic footprint or target site duplications typical of Ac transposition reactions. These results demonstrate a new intramolecular transposition mechanism by which transposons can greatly impact genome evolution.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
40
|
Casals F, Cáceres M, Manfrin MH, González J, Ruiz A. Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 2005; 169:2047-59. [PMID: 15695364 PMCID: PMC1449584 DOI: 10.1534/genetics.104.035048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged approximately 10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements.
Collapse
Affiliation(s)
- Ferran Casals
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
41
|
Gunderina LI, Kiknadze II, Istomina AG, Gusev VD, Miroshnichenko LA. Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0036-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP, Couronne O, Hua S, Smith MA, Zhang P, Liu J, Bussemaker HJ, van Batenburg MF, Howells SL, Scherer SE, Sodergren E, Matthews BB, Crosby MA, Schroeder AJ, Ortiz-Barrientos D, Rives CM, Metzker ML, Muzny DM, Scott G, Steffen D, Wheeler DA, Worley KC, Havlak P, Durbin KJ, Egan A, Gill R, Hume J, Morgan MB, Miner G, Hamilton C, Huang Y, Waldron L, Verduzco D, Clerc-Blankenburg KP, Dubchak I, Noor MAF, Anderson W, White KP, Clark AG, Schaeffer SW, Gelbart W, Weinstock GM, Gibbs RA. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 2005; 15:1-18. [PMID: 15632085 PMCID: PMC540289 DOI: 10.1101/gr.3059305] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 10/14/2004] [Indexed: 12/21/2022]
Abstract
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25-55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species--but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.
Collapse
Affiliation(s)
- Stephen Richards
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Chromosomal data have been underutilized in phylogenetic investigations despite the obvious potential that cytogenetic studies have to reveal both structural and functional homologies among taxa. In large part this is associated with difficulties in scoring conventional and molecular cytogenetic information for phylogenetic analysis. The manner in which chromosomal data have been used by most authors in the past was often conceptionally flawed in terms of the methods and principles underpinning modern cladistics. We present herein a review of the different methods employed, examine their relative strengths, and then outline a simple approach that considers the chromosomal change as the character, and its presence or absence the character state. We test this using one simulated and several empirical data sets. Features that are unique to cytogenetic investigations, including B-chromosomes, heterochromatic additions/deletions, and the location and number of nucleolar organizer regions (NORs), as well as the weighting of chromosomal characters, are critically discussed with regard to their suitability for phylogenetic reconstruction. We conclude that each of these classes of data have inherent problems that limit their usefulness in phylogenetic analyses and in most of these instances, inclusion should be subject to rigorous appraisal that addresses the criterion of unequivocal homology.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Museum National d'Histoire Naturelle, Laboratoire Origine, Structure et Evolution de la Biodiversité, 55, rue Buffon, F75005 Paris, France.
| | | | | | | |
Collapse
|
44
|
Dobigny G, Ozouf-Costaz C, Waters PD, Bonillo C, Coutanceau JP, Volobouev V. LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 2004; 12:787-93. [PMID: 15702417 DOI: 10.1007/s10577-005-5265-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 09/15/2004] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) sometimes induce karyotypic changes following recombination, breakage and rearrangement. We used FISH and Southern blot analyses to investigate the amount and distribution of LINE-1 retrotransposons in rodents (genus Taterillus, Muridae, Gerbillinae) that have recently undergone an important genome repatterning. Our results were interpreted in a known phylogenetic framework and clearly showed that LINE-1 elements were greatly amplified and non-randomly distributed in the most rearranged karyotypes. A comparison between FISH and conventional banding patterns provided evidence that LINE-1 insertion sites and chromosome breakpoints were not strongly correlated, thus suggesting that LINE-1 amplification subsequently accompanied Taterillus chromosome evolution. Similar patterns are observed in some cases of genomic stresses (hybrid genomes, cancer and DNA-damaged cells) and usually associated with DNA hypomethylation. We propose that intensively repatterned genomes face transient stress phases during which some epigenetic features, such as DNA methylation, are relaxed, thus allowing TE amplification.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Laboratoire Origine, Structure et Evolution de la Biodiversité, Muséum National d'Histoire Naturelle, 55, rue Buffon, F75005, Paris, France.
| | | | | | | | | | | |
Collapse
|
45
|
Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen'ev MB. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci U S A 2004; 101:14719-24. [PMID: 15465912 PMCID: PMC522041 DOI: 10.1073/pnas.0406281101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Indexed: 11/18/2022] Open
Abstract
Penelope-like elements are a class of retroelement that have now been identified in >50 species belonging to at least 10 animal phyla. The Penelope element isolated from Drosophila virilis is the only transpositionally active representative of this class isolated so far. The single ORF of Penelope and its relatives contains regions homologous to a reverse transcriptase of atypical structure and to the GIY-YIG, or Uri, an endonuclease (EN) domain not previously found in retroelements. We have expressed the single ORF of Penelope in a baculovirus expression system and have shown that it encodes a polyprotein with reverse transcriptase activity that requires divalent cations (Mn2+ and Mg2+). We have also expressed and purified the EN domain in Escherichia coli and have demonstrated that it has EN activity in vitro. Mutations in the conserved residues of the EN catalytic module abolish its nicking activity, whereas the DNA-binding properties of the mutant proteins remain unaffected. Only one strand of the target sequence is cleaved, and there is a certain degree of cleavage specificity. We propose that the Penelope EN cleaves the target DNA during transposition, generating a primer for reverse transcription. Our results show that an active Uri EN has been adopted by a retrotransposon.
Collapse
|
46
|
Evgen'ev MB, Zatsepina OG, Garbuz D, Lerman DN, Velikodvorskaya V, Zelentsova E, Feder ME. Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma 2004; 113:223-32. [PMID: 15480729 DOI: 10.1007/s00412-004-0312-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 07/15/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
To investigate the genetic basis of differing thermotolerance in the closely related species Drosophila virilis and Drosophila lummei, which replace one another along a latitudinal cline, we characterized the hsp70 gene cluster in multiple strains of both species. In both species, all hsp70 copies cluster in a single chromosomal locus, 29C1, and each cluster includes two hsp70 genes arranged as an inverted pair, the ancestral condition. The total number of hsp70 copies is maximally seven in the more thermotolerant D. virilis and five in the less tolerant D. lummei, with some strains of each species exhibiting lower copy numbers. Thus, maximum hsp70 copy number corresponds to hsp70 mRNA and Hsp70 protein levels reported previously and the size of heat-induced puffs at 29C1. The nucleotide sequence and spacing of the hsp70 copies are consistent with tandem duplication of the hsp70 genes in a common ancestor of D. virilis and D. lummei followed by loss of hsp70 genes in D. lummei. These and other data for hsp70 in Drosophila suggest that evolutionary adaptation has repeatedly modified hsp70 copy number by several different genetic mechanisms.
Collapse
Affiliation(s)
- Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 117984 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
47
|
Vallender EJ, Lahn BT. Effects of chromosomal rearrangements on human-chimpanzee molecular evolution. Genomics 2004; 84:757-61. [PMID: 15475253 DOI: 10.1016/j.ygeno.2004.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 07/12/2004] [Indexed: 11/24/2022]
Abstract
Many chromosomes are rearranged between humans and chimpanzees while others remain colinear. It was recently observed, based on over 100 genes, that the rates of protein evolution are substantially higher on rearranged than on colinear chromosomes during human-chimpanzee evolution. This finding led to the conclusion, since debated in the literature, that chromosomal rearrangements had played a key role in human-chimpanzee speciation. Here we re-examine this important conclusion by employing larger a data set (over 7000 genes), as well as alternative analyses. We show that the higher rates of protein evolution on rearranged chromosomes observed in the earlier study are not reproduced by our survey of the larger data set. We further show that the conclusion of the earlier study is likely confounded by two factors introduced by the relatively limited sample size: (1) nonuniform distribution of genes in the genome, and (2) stochastic noise in substitution rates inherent to short lineages such as the human-chimpanzee lineage. Our results offer a general cautionary note on the importance of controlling for hidden factors in studies involving bioinformatic surveys.
Collapse
Affiliation(s)
- Eric J Vallender
- Department of Human Genetics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
48
|
Waters PD, Dobigny G, Pardini AT, Robinson TJ. LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 2004; 113:137-44. [PMID: 15338236 DOI: 10.1007/s00412-004-0301-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 06/04/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
Long interspersed nuclear elements (LINEs) comprise about 21% of the human genome (of which L1 is most abundant) and are preferentially accumulated in AT-rich regions, as well as the X and Y chromosomes. Most knowledge of L1 distribution in mammals is restricted to human and mouse. Here we report the first investigation of L1 distribution in the genomes of a wide variety of eutherian mammals, including species in the two basal clades, Afrotheria and Xenarthra. Our results show L1 accumulation on the X of all eutherian mammals, an observation consistent with an ancestral involvement of these elements in the X-inactivation process (the Lyon repeat hypothesis). Surprisingly, conspicuous accumulation of L1 in AT-rich regions of the genome was not observed in any species outside of Euarchontoglires (represented by human, mouse and rabbit). Although several features were common to most species investigated, our comprehensive survey shows that the patterns observed in human and mouse are, in many aspects, far from typical for all mammals. We discuss these findings with reference to models that have previously been proposed to explain the AT distribution bias of L1 in human and mouse, and how this relates to the evolution of these elements in other eutherian genomes.
Collapse
Affiliation(s)
- Paul D Waters
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
| | | | | | | |
Collapse
|
49
|
Kandul NP, Lukhtanov VA, Dantchenko AV, Coleman JWS, Sekercioglu CH, Haig D, Pierce NE. Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-alpha: karyotype diversification and species radiation. Syst Biol 2004; 53:278-98. [PMID: 15205053 DOI: 10.1080/10635150490423692] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Butterflies in the large Palearctic genus Agrodiaetus (Lepidoptera: Lycaenidae) are extremely uniform and exhibit few distinguishing morphological characters. However, these insects are distinctive in one respect: as a group they possess among the greatest interspecific karyotype diversity in the animal kingdom, with chromosome numbers (n) ranging from 10 to 125. The monophyly of Agrodiaetus and its systematic position relative to other groups within the section Polyommatus have been controversial. Characters from the mitochondrial genes for cytochrome oxidases I and II and from the nuclear gene for elongation factor 1 alpha were used to reconstruct the phylogeny of Agrodiaetus using maximum parsimony and Bayesian phylogenetic methods. Ninety-one individuals, encompassing most of the taxonomic diversity of Agrodiaetus, and representatives of 14 related genera were included in this analysis. Our data indicate that Agrodiaetus is monophyletic. Representatives of the genus Polyommatus (sensu stricto) are the closest relatives. The sequences of the Agrodiaetus taxa in this analysis are tentatively arranged into 12 clades, only 1 of which corresponds to a species group traditionally recognized in Agrodiaetus. Heterogeneous substitution rates across a recovered topology were homogenized with a nonparametric rate-smoothing algorithm before the application of a molecular clock. Two published estimates of substitution rates dated the origin of Agrodiaetus between 2.51 and 3.85 million years ago. During this time, there was heterogeneity in the rate and direction of karyotype evolution among lineages within the genus. Karyotype instability has evolved independently three times in the section Polyommatus, within the lineages Agrodiaetus, Lysandra, and Plebicula. Rapid karyotype diversification may have played a significant role in the radiation of the genus Agrodiaetus.
Collapse
Affiliation(s)
- Nikolai P Kandul
- Department of Organismal and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V. Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in TATERILLUS X (Rodentia, Gerbillinae). Cytogenet Genome Res 2004; 103:94-103. [PMID: 15004471 DOI: 10.1159/000076296] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 08/14/2003] [Indexed: 11/19/2022] Open
Abstract
A survey of 28S and 5S rRNA gene clusters, and telomeric repeats was performed using single and double FISH in the Taterillus genus (Rodentia, Muridae, Gerbillinae). Taterillus was previously demonstrated to have undergone a very recent and extensive chromosomal evolution. Our FISH results demonstrate that rRNA genes can vary in location and number irrespective of the phylogenetic relationships. Telomeric repeats were detected in pericentromeric and interstitial regions of several chromosomes, thus providing nonambiguous evolutionary footprints of Robertsonian and tandem translocation events. These footprints are discussed in reference to the molecular process of these karyotypical changes. Also, examples of colocation of rDNA clusters and telomeric repeats lend support to their possible involvement in nucleolus formation. Finally, the presence of rRNA genes, and the extensive amplification of telomeric repeats at specific loci within a double X-autosome translocated element which were not observed on the homologous Y1 and Y2, served as basis for an epigenomic hypothesis on X-autosome translocation viability in mammals.
Collapse
Affiliation(s)
- G Dobigny
- Laboratoire Origine, Structure et Evolution de la Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | |
Collapse
|