1
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Zhao J, Ahn B, Lin H. Loss of Diphthamide Increases DNA Replication Stress in Mammalian Cells by Modulating the Translation of RRM1. ACS CENTRAL SCIENCE 2024; 10:1835-1847. [PMID: 39463834 PMCID: PMC11503486 DOI: 10.1021/acscentsci.4c00967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Diphthamide (DPH) is a highly conserved post-translational modification exclusively present in eukaryotic translation elongation factor 2 (eEF2), with its loss leading to embryonic lethality in mice and developmental disorders in humans. In this study, we unveil the role of diphthamide in mammalian cell DNA damage stress, with a particular emphasis on DNA replication stress. We developed a systematic strategy to identify human proteins affected by diphthamide with a combination of computational profiling and quantitative proteomics. Through this approach, we determine that the translation of RRM1 is modulated by diphthamide via -1 frameshifting. Importantly, our results reveal that the dysregulation of RRM1 translation in DPH-deficient cells is causally linked to elevated DNA replication stress. These findings provide a potential explanation for how diphthamide deficiency leads to cancer and developmental defects in humans.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Byunghyun Ahn
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Molecular Biology and Genetics, Cornell
University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Molecular Biology and Genetics, Cornell
University, Ithaca, New York 14853, United States
- Howard Hughes
Medical Institute, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Verma AK, Sharma P, Islam Z, Biswal AK, Tak Y, Sahi C. Arabidopsis Dph4 is an Hsp70 Cochaperone with Iron-Binding Properties. ACS OMEGA 2024; 9:37650-37661. [PMID: 39281955 PMCID: PMC11391554 DOI: 10.1021/acsomega.4c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
J-domain proteins (JDPs) are obligate cochaperones of Hsp70s with a wide range of functions in protein homeostasis. Although the J-domain is required for the stimulation of Hsp70s ATPase activity, the functional specificity of JDPs is governed by domains or regions other than the J-domain. Jjj3/Dph4, a class III JDP, is required for diphthamide (DPH) biosynthesis in eukaryotes, including yeast and mammals. Dph4 has a conserved N-terminal J-domain and an uncharacterized C-terminal domain containing a signature CSL zinc finger motif. Previously, we showed that the Dph4 ortholog in Arabidopsis thaliana (atDjC13/AtJjj3/AtDph4) could restore DPH biosynthesis in yeast jjj3Δ mutant in a J-domain-dependent manner. Here, we characterize the C-terminal CSL motif of AtDph4 using yeast genetic and biochemical approaches. The CSL motif of AtDph4 is essential for DPH biosynthesis, and like human Dph4, AtDph4 showed distinct iron-binding activity, which is not present in its yeast counterpart. ScDph4 and AtDph4 proteins exhibit distinct iron-binding capabilities, as evidenced by UV-vis spectrophotometry, SEM-EDS (energy-dispersive spectroscopy function on the scanning electron microscope) and electron paramagnetic resonance (EPR) spectra analyses. Collectively, our data suggests that beyond their role as an Hsp70 cochaperone, Dph4 homologues in complex eukaryotes may have iron-binding abilities, indicating a potential role in iron-sulfur cluster assembly and iron homeostasis.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390-9096, United States
| | - Priya Sharma
- Department of Botany, Faculty of Science, University of Delhi, Delhi 110007, India
| | - Zeyaul Islam
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110 Doha, Qatar
| | - Anup Kumar Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Yogesh Tak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brian Institute, UT Southwestern Medical Center, Dallas, Texas 75390-9096, United States
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
4
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
5
|
Zhang H, Quintana J, Ütkür K, Adrian L, Hawer H, Mayer K, Gong X, Castanedo L, Schulten A, Janina N, Peters M, Wirtz M, Brinkmann U, Schaffrath R, Krämer U. Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nat Commun 2022; 13:4009. [PMID: 35817801 PMCID: PMC9273596 DOI: 10.1038/s41467-022-31712-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.
Collapse
Affiliation(s)
- Hongliang Zhang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Julia Quintana
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Koray Ütkür
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Harmen Hawer
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Xiaodi Gong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Leonardo Castanedo
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Anna Schulten
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Marcus Peters
- Molecular Immunology, Medical Faculty, Ruhr University Bochum, 44801, Bochum, Germany
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Raffael Schaffrath
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany.
| |
Collapse
|