1
|
Dong Y, Dong J, Xiao H, Li Y, Wang B, Zhang S, Cui M. A gut microbial metabolite cocktail fights against obesity through modulating the gut microbiota and hepatic leptin signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9356-9367. [PMID: 39030978 DOI: 10.1002/jsfa.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Excessive body weight and obesity elevate the risk of chronic non-communicable diseases. The judicious application of the gut microbiome, encompassing both microorganisms and their derived compounds, holds considerable promise in the treatment of obesity. RESULTS In this study, we showed that a cocktail of gut microbiota-derived metabolites, comprising indole 3-propionic acid (IPA), sodium butyrate (SB) and valeric acid (VA), alleviated various symptoms of obesity in both male and female mice subjected to a high-fat diet (HFD). The 16S ribosomal RNA (rRNA) sequencing revealed that administering the cocktail via oral gavage retained the gut microbiota composition in obese mice. Fecal microbiota transplantation using cocktail-treated mice as donors mitigated the obesity phenotype of HFD-fed mice. Transcriptomic sequencing analysis showed that the cocktail preserved the gene expression profile of hepatic tissues in obese mice, especially up-regulated the expression level of leptin receptor. Gene delivery via in vivo fluid dynamics further validated that the anti-obesity efficacy of the cocktail was dependent on leptin signaling at least partly. The cocktail also inhibited the expression of appetite stimulators in hypothalamus. Together, the metabolite cocktail combated adiposity by retaining the gut microbiota configuration and activating the hepatic leptin signaling pathway. CONCLUSIONS Our findings provide a sophisticated regulatory network between the gut microbiome and host, and highlight a cocktail of gut microbiota-derived metabolites, including IPA, SB, and VA, might be a prospective intervention for anti-obesity in a preclinical setting. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxi Dong
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuan Li
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bin Wang
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuqin Zhang
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Nagpal S, Srivastava SK. Colon or semicolon: gut sampling microdevices for omics insights. NPJ Biofilms Microbiomes 2024; 10:97. [PMID: 39358351 PMCID: PMC11447266 DOI: 10.1038/s41522-024-00536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
Ingestible microdevices represent a breakthrough in non-invasive sampling of the human gastrointestinal (GI) tract. By capturing the native spatiotemporal microbiome and intricate biochemical gradients, these devices allow a non-invasive multi-omic access to the unperturbed host-microbiota crosstalk, immune/nutritional landscapes and gut-organ connections. We present the current progress of GI sampling microdevices towards personalized metabolism and fostering collaboration among clinicians, engineers, and data scientists.
Collapse
Affiliation(s)
- Sunil Nagpal
- TCS Research, Tata Consultancy Services Ltd, Pune, India
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Sarvesh Kumar Srivastava
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. eLife 2024; 13:e93146. [PMID: 39240756 PMCID: PMC11379459 DOI: 10.7554/elife.93146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
When examining bacterial genomes for evidence of past selection, the results depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed by dN/dS, the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with opposite implications for dynamical intuition and applications of dN/dS. Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain the dN/dS decay given only dozens of locally fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values of dN/dS obtained from long timescales with caution as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short timescales.
Collapse
Affiliation(s)
- Paul A Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
4
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557751. [PMID: 37745437 PMCID: PMC10515931 DOI: 10.1101/2023.09.14.557751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
When examining bacterial genomes for evidence of past selection, the results obtained depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed byd N / d S , the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale-dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with exactly opposite implications for dynamical intuition and applications ofd N / d S . Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain thed N / d S decay given only dozens of locally-fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values ofd N / d S obtained from long-time scales with caution, as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short time scales.
Collapse
Affiliation(s)
- Paul A. Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Ai T, Wan J, Yu X, Liu J, Yin C, Yang L, Liu H, Qin R. The Non-Denatured Processing of Brasenia schreberi Mucilage-Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions. Foods 2024; 13:1824. [PMID: 38928766 PMCID: PMC11203210 DOI: 10.3390/foods13121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Food non-denatured processes, such as freeze-drying and grinding, are commonly applied to raw materials with good bioactive functions. Although the functional components are maintained, whether structural and physical changes impact the in vivo function is often ignored in practical situations. Brasenia schreberi mucilage (BSM) has a significant alleviation effect on DSS-induced colitis. This work focused on the influence of non-denatured manufacture on the colonic benefits of BSM-based products. First, three forms of products including fresh mucilage (FM), freeze-dried products (FS), and freeze-dried powder (FP) were prepared. Then, their in vitro physiochemical properties were compared, analyzing their influence on the gut inflammation degree, microbial composition, and SCFA production in mice. The results suggested that the water retention rate of FS and FP was decreased to 34.59 ± 3.85%, and 9.93 ± 1.76%. The viscosity of FM, FS, and FP was 20.14 Pa∙s, 4.92 Pa∙s, and 0.41 Pa∙s, respectively. The freeze-drying and grinding process also damaged the lamellar microstructure of BSM. Then, animal tests showed that colitis mice intervened with FM, FS, and FP had disease activity scores of 2.03, 3.95, and 4.62. Meanwhile, FM notably changed the gut microbial composition and significantly increased propionate and butyrate levels. It seemed that the distinct colitis alleviation efficacy of BSM-based products is attributed to different hydrodynamic properties in the gut. FM had relatively higher viscosity and correspondingly high nutritional density in the gut lumen, which stimulates Firmicutes growth and promotes butyrate production, and thereby exhibited the best efficiency on protecting from colitis.
Collapse
Affiliation(s)
- Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Xiujuan Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Lindong Yang
- Conservation and Comprehensive Utilization Engineering Center of Biological Resources in Southern Minority Areas, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China;
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| |
Collapse
|
6
|
Freire TFA, Hu Z, Wood KB, Gjini E. Modeling spatial evolution of multi-drug resistance under drug environmental gradients. PLoS Comput Biol 2024; 20:e1012098. [PMID: 38820350 PMCID: PMC11142541 DOI: 10.1371/journal.pcbi.1012098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/23/2024] [Indexed: 06/02/2024] Open
Abstract
Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria based on a drug-concentration rescaling approach. We show how the resistance to drugs in space, and the consequent adaptation of growth rate, is governed by a Price equation with diffusion, integrating features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Although in many evolution models, per capita growth rate is a natural surrogate for fitness, in spatially-extended, potentially heterogeneous habitats, fitness is an emergent property that potentially reflects additional complexities, from boundary conditions to the specific spatial variation of growth rates. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical metric for characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem, λ1. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits to the relative advantage of each mutant across the environment. Our approach allows one to predict the precise outcomes of selection among mutants over space, ultimately from comparing their λ1 values, which encode a critical interplay between growth functions, movement traits, habitat size and boundary conditions. Such mathematical understanding opens new avenues for multi-drug therapeutic optimization.
Collapse
Affiliation(s)
- Tomas Ferreira Amaro Freire
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Zhijian Hu
- Departments of Biophysics and Physics, University of Michigan, United States of America
| | - Kevin B. Wood
- Departments of Biophysics and Physics, University of Michigan, United States of America
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
7
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
8
|
Scheidweiler D, Bordoloi AD, Jiao W, Sentchilo V, Bollani M, Chhun A, Engel P, de Anna P. Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media. Nat Commun 2024; 15:191. [PMID: 38167276 PMCID: PMC10761857 DOI: 10.1038/s41467-023-44267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Biological tissues, sediments, or engineered systems are spatially structured media with a tortuous and porous structure that host the flow of fluids. Such complex environments can influence the spatial and temporal colonization patterns of bacteria by controlling the transport of individual bacterial cells, the availability of resources, and the distribution of chemical signals for communication. Yet, due to the multi-scale structure of these complex systems, it is hard to assess how different biotic and abiotic properties work together to control the accumulation of bacterial biomass. Here, we explore how flow-mediated interactions allow the gut commensal Escherichia coli to colonize a porous structure that is composed of heterogenous dead-end pores (DEPs) and connecting percolating channels, i.e. transmitting pores (TPs), mimicking the structured surface of mammalian guts. We find that in presence of flow, gradients of the quorum sensing (QS) signaling molecule autoinducer-2 (AI-2) promote E. coli chemotactic accumulation in the DEPs. In this crowded environment, the combination of growth and cell-to-cell collision favors the development of suspended bacterial aggregates. This results in hot-spots of resource consumption, which, upon resource limitation, triggers the mechanical evasion of biomass from nutrients and oxygen depleted DEPs. Our findings demonstrate that microscale medium structure and complex flow coupled with bacterial quorum sensing and chemotaxis control the heterogenous accumulation of bacterial biomass in a spatially structured environment, such as villi and crypts in the gut or in tortuous pores within soil and filters.
Collapse
Affiliation(s)
- David Scheidweiler
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Ankur Deep Bordoloi
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Wenqiao Jiao
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Codutti A, Cremer J, Alim K. Changing Flows Balance Nutrient Absorption and Bacterial Growth along the Gut. PHYSICAL REVIEW LETTERS 2022; 129:138101. [PMID: 36206418 DOI: 10.1103/physrevlett.129.138101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Small intestine motility and its ensuing flow of luminal content impact both nutrient absorption and bacterial growth. To explore this interdependence we introduce a biophysical description of intestinal flow and absorption. Rooted in observations of mice we identify the average flow velocity as the key control of absorption efficiency and bacterial growth, independent of the exact contraction pattern. We uncover self-regulation of contraction and flow in response to nutrients and bacterial levels to promote efficient absorption while restraining detrimental bacterial overgrowth.
Collapse
Affiliation(s)
- Agnese Codutti
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jonas Cremer
- Biology Department, Stanford University, Stanford, 94305 California, USA
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Physics Department and CPA, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
10
|
Emergent evolutionary forces in spatial models of luminal growth and their application to the human gut microbiota. Proc Natl Acad Sci U S A 2022; 119:e2114931119. [PMID: 35787046 PMCID: PMC9282425 DOI: 10.1073/pnas.2114931119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The genetic composition of the gut microbiota is constantly reshaped by ecological and evolutionary forces. These strain-level dynamics are challenging to understand because they depend on complex spatial growth processes that take place within a host. Here we introduce a population genetic framework to predict how stochastic evolutionary forces emerge from simple models of microbial growth in spatially extended environments like the intestinal lumen. Our framework shows how fluid flow and longitudinal variation in growth rate combine to shape the frequencies of genetic variants in simulated fecal samples, yielding analytical expressions for the effective generation times, selection coefficients, and rates of genetic drift. We find that over longer timescales, the emergent evolutionary dynamics can often be captured by well-mixed models that lack explicit spatial structure, even when there is substantial spatial variation in species-level composition. By applying these results to the human colon, we find that continuous fluid flow and simple forms of wall growth alone are unlikely to create sufficient bottlenecks to allow large fluctuations in mutant frequencies within a host. We also find that the effective generation times may be significantly shorter than expected from traditional average growth rate estimates. Our results provide a starting point for quantifying genetic turnover in spatially extended settings like the gut microbiota and may be relevant for other microbial ecosystems where unidirectional fluid flow plays an important role.
Collapse
|
11
|
Labavić D, Loverdo C, Bitbol AF. Hydrodynamic flow and concentration gradients in the gut enhance neutral bacterial diversity. Proc Natl Acad Sci U S A 2022; 119:e2108671119. [PMID: 34969835 PMCID: PMC8740595 DOI: 10.1073/pnas.2108671119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/23/2023] Open
Abstract
The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that includes hydrodynamic flow and resulting gradients of food and bacterial concentrations. We find that this fixation probability is substantially increased, compared with an equivalent well-mixed system, in the regime where the profiles of food and bacterial concentration are strongly spatially dependent. Fixation probability then becomes independent of total population size. We show that our results can be rationalized by introducing an active population, which consists of those bacteria that are actively consuming food and dividing. The active population size yields an effective population size for neutral mutant fixation probability in the gut.
Collapse
Affiliation(s)
- Darka Labavić
- CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR 8237), Sorbonne Université, F-75005 Paris, France
| | - Claude Loverdo
- CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR 8237), Sorbonne Université, F-75005 Paris, France;
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
- SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|