1
|
Knetsch TGJ, Ubbink M. Production and compositional analysis of full-length influenza virus hemagglutinin in Nanodiscs: Insights from multi-angle light scattering. Protein Expr Purif 2025; 227:106641. [PMID: 39653304 DOI: 10.1016/j.pep.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
The global threat of pandemics highlights the urgency of developing innovative vaccine strategies. Viral spike proteins are the primary antigens recognized by the immune system and serve as key targets for vaccine development. This study reports the production of full-length Influenza A virus surface glycoprotein, hemagglutinin (HA), and its incorporation into Nanodiscs (NDs). HA was expressed in insect cells and purified using detergents, maintaining its functional integrity. Characterisation by size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) confirmed that HA could be incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) NDs as a single trimer. SEC-MALS was instrumental in analysing the composition of NDs, which included HA, membrane scaffold proteins, lipids, and glycans. These findings provide a robust framework for the production and reconstitution of glycoproteins in NDs, and offers valuable insights into the study of multi-component nanoparticles using MALS. Our work highlights the potential of NDs for studying viral glycoproteins and advances the development of well-defined recombinant ND-based vaccines.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Duan H, Chi X, Yang X, Pan S, Liu X, Gao P, Zhang F, Zhang X, Dong X, Liao Y, Yang W. Computational design and improvement of a broad influenza virus HA stem targeting antibody. Structure 2025:S0969-2126(25)00002-4. [PMID: 39884272 DOI: 10.1016/j.str.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Broadly neutralizing antibodies (nAbs) are vital therapeutic tools to counteract both pandemic and seasonal influenza threats. Traditional strategies for optimizing nAbs generally rely on labor-intensive, high-throughput mutagenesis screens. Here, we present an innovative structure-based design framework for the optimization of nAbs, which integrates epitope-paratope analysis, computational modeling, and rational design approaches, complemented by comprehensive experimental assessment. This approach was applied to optimize MEDI8852, a nAb targeting the stalk region of influenza A virus hemagglutinin (HA). The resulting variant, M18.1.2.2, shows a marked enhancement in both affinity and neutralizing efficacy, as demonstrated both in vitro and in vivo. Computational modeling reveals that this improvement can be attributed to the fine-tuning of interactions between the antibody's side-chains and the epitope residues that are highly conserved across the influenza A virus HA stalk. Our dry-wet iterative protocol for nAb optimization presented here yielded a promising candidate for influenza intervention.
Collapse
Affiliation(s)
- Huarui Duan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuehua Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengnan Pan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peixiang Gao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyuan Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemeng Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Liao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Liu DJ, Zhong XQ, Ru YX, Zhao SL, Liu CC, Tang YB, Wu X, Zhang YS, Zhang HH, She JY, Wan MY, Li YW, Zheng HP, Deng L. Disulfide-stabilized trimeric hemagglutinin ectodomains provide enhanced heterologous influenza protection. Emerg Microbes Infect 2024; 13:2389095. [PMID: 39101691 PMCID: PMC11334750 DOI: 10.1080/22221751.2024.2389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan-Xia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Bo Tang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Shuai Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yao-Wang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - He-Ping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
- Beijing Weimiao Biotechnology Co., Ltd., Beijing, People’s Republic of China
| |
Collapse
|
4
|
Sun Y, Zhu Y, Zhang P, Sheng S, Guan Z, Cong Y. Hemagglutinin glycosylation pattern-specific effects: implications for the fitness of H9.4.2.5-branched H9N2 avian influenza viruses. Emerg Microbes Infect 2024; 13:2364736. [PMID: 38847071 PMCID: PMC11182062 DOI: 10.1080/22221751.2024.2364736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Since 2007, h9.4.2.5 has emerged as the most predominant branch of H9N2 avian influenza viruses (AIVs) that affects the majority of the global poultry population. The spread of this viral branch in vaccinated chicken flocks has not been considerably curbed despite numerous efforts. The evolutionary fitness of h9.4.2.5-branched AIVs must consequently be taken into consideration. The glycosylation modifications of hemagglutinin (HA) play a pivotal role in regulating the balance between receptor affinity and immune evasion for influenza viruses. Sequence alignment showed that five major HA glycosylation patterns have evolved over time in h9.4.2.5-branched AIVs. Here, we compared the adaptive phenotypes of five virus mutants with different HA glycosylation patterns. According to the results, the mutant with 6 N-linked glycans displayed the best acid and thermal stability and a better capacity for multiplication, although having a relatively lower receptor affinity than 7 glycans. The antigenic profile between the five mutants revealed a distinct antigenic distance, indicating that variations in glycosylation level have an impact on antigenic drift. These findings suggest that changes in the number of glycans on HA can not only modulate the receptor affinity and antigenicity of H9N2 AIVs, but also affect their stability and multiplication. These adaptive phenotypes may underlie the biological basis for the dominant strain switchover of h9.4.2.5-branched AIVs. Overall, our study provides a systematic insight into how changes in HA glycosylation patterns regulate the evolutionary fitness and epidemiological dominance drift of h9.4.2.5-branched H9N2 AIVs, which will be of great benefit for the glycosylation-dependent vaccine design.
Collapse
Affiliation(s)
- Yixue Sun
- Department of Policies and Regulations, Changchun University, Changchun, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanting Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shouzhi Sheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenhong Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanlong Cong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Badiee S, Govind Kumar V, Moradi M. Molecular Dynamics Investigation of the Influenza Hemagglutinin Conformational Changes in Acidic pH. J Phys Chem B 2024; 128:11151-11163. [PMID: 39497238 PMCID: PMC11571222 DOI: 10.1021/acs.jpcb.4c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024]
Abstract
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics. Specifically, we investigated the impact of protonation on conserved histidine residues (H1062) located in the hinge region of HA2. Our analysis encompassed comparisons between nonprotonated (NP), partially protonated (1P, 2P), and fully protonated (3P) conditions. Our findings reveal substantial pH-dependent conformational alterations in the HA protein, affecting its receptor-binding capability and immune evasion potential. Notably, the nonprotonated form exhibits greater stability compared to protonated states. Conformational shifts in the central helices of HA2 involve outward movement, counterclockwise rotation of protonated helices, and fusion peptide release in protonated systems. Disruption of hydrogen bonds between the fusion peptide and central helices of HA2 drives this release. Moreover, HA1 separation is more likely in the fully protonated system (3P) compared to nonprotonated systems (NP), underscoring the influence of protonation. These insights shed light on influenza virus infection mechanisms and may inform the development of novel antiviral drugs targeting HA protein and pH-responsive drug delivery systems for influenza.
Collapse
Affiliation(s)
- Shadi
A. Badiee
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Vivek Govind Kumar
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
7
|
Maurer DP, Vu M, Ramos ASF, Dugan HL, Khalife P, Geoghegan JC, Walker LM, Bajic G, Schmidt AG. Conserved sites on the influenza H1 and H3 hemagglutinin recognized by human antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619298. [PMID: 39484545 PMCID: PMC11526932 DOI: 10.1101/2024.10.22.619298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Monoclonal antibodies (mAbs) targeting the influenza hemagglutinin (HA) have the potential to be used as prophylactics or templates for next-generation vaccines that provide broad protection. Here, we isolated broad, subtype-neutralizing mAbs from human B cells targeting the H1 or H3 HA head as well as a unique mAb targeting the stem. The H1 mAbs target the previously defined lateral patch epitope on H1 HAs and recognize HAs from 1933 to 2021 in addition to a swine H1N1 virus with pandemic potential. Using directed evolution, we improved the neutralization potency of these H1 mAbs towards a contemporary H1 strain. Using deep mutational scanning of four antigenically distinct H1N1 viruses, we identified potential viral escape pathways. For the H3 mAbs we used cryo-EM to define the targeted epitopes: one mAb recognizes the side of the H3 head, accommodating the N133 glycan and a pocket underneath the receptor binding site. The other H3 mAb recognizes an epitope in the HA stem that overlaps with previously characterized mAbs, but with distinct antibody variable genes and mode of recognition. Collectively, these mAbs identify common sites recognized by broad, subtype-specific mAbs that may be elicited by next-generation vaccines.
Collapse
|
8
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Vincent Baker AL, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol 2024; 22:e3002916. [PMID: 39531474 PMCID: PMC11584116 DOI: 10.1371/journal.pbio.3002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Jenny J Ahn
- Department of Microbiology, University of Washington, Seattle, Washington, DC, United States of America
| | - Jordan T Ort
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jin Yu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, United States of America
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, United Kingdom
| | - Louise H Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, DC, United States of America
| |
Collapse
|
9
|
Le Sage V, Werner BD, Merrbach GA, Petnuch SE, O’Connell AK, Simmons HC, McCarthy KR, Reed DS, Moncla LH, Bhavsar D, Krammer F, Crossland NA, McElroy AK, Duprex WP, Lakdawala SS. Pre-existing H1N1 immunity reduces severe disease with bovine H5N1 influenza virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619881. [PMID: 39484442 PMCID: PMC11527028 DOI: 10.1101/2024.10.23.619881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The emergence of highly pathogenic H5N1 avian influenza in dairy cattle herds across the United States has caused multiple mild human infections. There is an urgent need to understand the risk of spillover into humans. Here, we show that pre-existing immunity from the 2009 H1N1 pandemic influenza virus provided protection from mortality and severe clinical disease to ferrets intranasally infected with bovine H5N1. H1N1 immune ferrets exhibited a differential tissue tropism with little bovine H5N1 viral dissemination to organs outside the respiratory tract and significantly less H5N1 virus found in nasal secretions and the respiratory tract. Additionally, ferrets with H1N1 prior immunity produced antibodies that cross-reacted with H5N1 neuraminidase protein. Taken together, these results suggest that mild disease in humans may be linked to prior immunity to human seasonal influenza viruses.
Collapse
Affiliation(s)
- Valerie Le Sage
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Bailee D. Werner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Grace A. Merrbach
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Sarah E. Petnuch
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Aoife K O’Connell
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
| | - Holly C. Simmons
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - Kevin R. McCarthy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Disha Bhavsar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Anita K. McElroy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Seema S. Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
10
|
Juraszek J, Milder FJ, Yu X, Blokland S, van Overveld D, Abeywickrema P, Tamara S, Sharma S, Rutten L, Bakkers MJG, Langedijk JPM. Engineering a cleaved, prefusion-stabilized influenza B virus hemagglutinin by identification and locking of all six pH switches. PNAS NEXUS 2024; 3:pgae462. [PMID: 39445049 PMCID: PMC11497598 DOI: 10.1093/pnasnexus/pgae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Vaccine components based on viral fusion proteins require high stability of the native prefusion conformation for optimal potency and manufacturability. In the case of influenza B virus hemagglutinin (HA), the stem's conformation relies on efficient cleavage. In this study, we identified six pH-sensitive regions distributed across the entire ectodomain where protonated histidines assume either a repulsive or an attractive role. Substitutions in these areas enhanced the protein's expression, quality, and stability in its prefusion trimeric state. Importantly, this stabilization enabled the production of a cleavable HA0, which is further processed into HA1 and HA2 by furin during exocytic pathway passage, thereby facilitating correct folding, increased stability, and screening for additional stabilizing substitutions in the core of the metastable fusion domain. Cryo-EM analysis at neutral and low pH revealed a previously unnoticed pH switch involving the C-terminal residues of the natively cleaved HA1. This switch keeps the fusion peptide in a clamped state at neutral pH, averting premature conformational shift. Our findings shed light on new strategies for possible improvements of recombinant or genetic-based influenza B vaccines.
Collapse
Affiliation(s)
- Jarek Juraszek
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands
| | - Fin J Milder
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands
| | - Xiaodi Yu
- Structural and Protein Science, Janssen Research and Development, Spring House, PA 19044, USA
| | - Sven Blokland
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands
| | | | - Pravien Abeywickrema
- Structural and Protein Science, Janssen Research and Development, Spring House, PA 19044, USA
| | - Sem Tamara
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands
| | - Sujata Sharma
- Structural and Protein Science, Janssen Research and Development, Spring House, PA 19044, USA
| | - Lucy Rutten
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands
| | - Mark J G Bakkers
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands
| | | |
Collapse
|
11
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
12
|
Bakkers MJG, Ritschel T, Tiemessen M, Dijkman J, Zuffianò AA, Yu X, van Overveld D, Le L, Voorzaat R, van Haaren MM, de Man M, Tamara S, van der Fits L, Zahn R, Juraszek J, Langedijk JPM. Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer. Nat Commun 2024; 15:6270. [PMID: 39054318 PMCID: PMC11272930 DOI: 10.1038/s41467-024-50659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The prefusion conformation of human metapneumovirus fusion protein (hMPV Pre-F) is critical for eliciting the most potent neutralizing antibodies and is the preferred immunogen for an efficacious vaccine against hMPV respiratory infections. Here we show that an additional cleavage event in the F protein allows closure and correct folding of the trimer. We therefore engineered the F protein to undergo double cleavage, which enabled screening for Pre-F stabilizing substitutions at the natively folded protomer interfaces. To identify these substitutions, we developed an AI convolutional classifier that successfully predicts complex polar interactions often overlooked by physics-based methods and visual inspection. The combination of additional processing, stabilization of interface regions and stabilization of the membrane-proximal stem, resulted in a Pre-F protein vaccine candidate without the need for a heterologous trimerization domain that exhibited high expression yields and thermostability. Cryo-EM analysis shows the complete ectodomain structure, including the stem, and a specific interaction of the newly identified cleaved C-terminus with the adjacent protomer. Importantly, the protein induces high and cross-neutralizing antibody responses resulting in near complete protection against hMPV challenge in cotton rats, making the highly stable, double-cleaved hMPV Pre-F trimer an attractive vaccine candidate.
Collapse
Affiliation(s)
- Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio B.V., Amsterdam, The Netherlands
| | - Tina Ritschel
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- J&J Innovative Medicine Technology, R&D, New Brunswick, NJ, USA
| | | | - Jacobus Dijkman
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Machine Learning Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelo A Zuffianò
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- Promaton BV, Amsterdam, The Netherlands
| | - Xiaodi Yu
- Structural & Protein Science, Janssen Research and Development, Spring House, PA, 19044, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | | | - Martijn de Man
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Sem Tamara
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands.
- ForgeBio B.V., Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Badiee SA, Kumar VG, Moradi M. Molecular dynamics investigation of the influenza hemagglutinin conformational changes in acidic pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602399. [PMID: 39026831 PMCID: PMC11257422 DOI: 10.1101/2024.07.07.602399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics. Specifically, we investigated the impact of protonation on conserved histidine residues (His106 2 ) located in the hinge region of HA2. Our analysis encompassed comparisons between non-protonated (NP), partially protonated (1P, 2P), and fully-protonated (3P) conditions. Our findings reveal substantial pH-dependent conformational alterations in the HA protein, affecting its receptor-binding capability and immune evasion potential. Notably, the non-protonated form exhibits greater stability compared to protonated states. Conformational shifts in the central helices of HA2 involve outward movement, counterclockwise rotation of protonated helices, and fusion peptide release in protonated systems. Disruption of hydrogen bonds between the fusion peptide and central helices of HA2 drives this release. Moreover, HA1 separation is more likely in the fully-protonated system (3P) compared to non-protonated systems (NP), underscoring the influence of protonation. These insights shed light on influenza virus infection mechanisms and may inform the development of novel antiviral drugs targeting HA protein and pH-responsive drug delivery systems for influenza.
Collapse
|
14
|
Ren H, Zhang B, Zhang X, Wang T, Hou X, Lan X, Pan C, Wu J, Liu B. Self-Assembling Nanoparticle Hemagglutinin Influenza Vaccines Induce High Antibody Response. Int J Mol Sci 2024; 25:7259. [PMID: 39000366 PMCID: PMC11241447 DOI: 10.3390/ijms25137259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
As a highly pathogenic avian virus, H5 influenza poses a serious threat to livestock, the poultry industry, and public health security. Hemagglutinin (HA) is both the dominant epitope and the main target of influenza-neutralizing antibodies. Here, we designed a nanoparticle hemagglutinin influenza vaccine to improve the immunogenicity of the influenza vaccine. In this study, HA5 subtype influenza virus was used as the candidate antigen and was combined with the artificially designed double-branch scaffold protein I53_dn5 A and B. A structurally correct and bioactive trimer HA5-I53_dn5B/Y98F was obtained through secretion and purification using an insect baculovirus expression system; I53_dn5A was obtained by purification using a prokaryotic expression system. HA5-I53_dn5B/Y98F and I53_dn5A self-assembled into spherical nanoparticles (HA5-I53_dn5) in vitro with a diameter of about 45 nm. Immunization and serum test results showed that both HA5-I53_dn5B/Y98F and HA5-I53_dn5 could induce HA5-specific antibodies; however, the immunogenicity of HA5-I53_dn5 was better than that of HA5-I53_dn5B/Y98F. Groups treated with HA5-I53_dn5B and HA5-I53_dn5 nanoparticles produced IgG antibody titers that were not statistically different from those of the nanoparticle-containing adjuvant group. This production of trimerized HA5-I53_dn5B and HA5-I53_dn5 nanoparticles using baculovirus expression provides a reference for the development of novel, safe, and efficient influenza vaccines.
Collapse
Affiliation(s)
- Hongying Ren
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (H.R.); (B.Z.); (T.W.); (X.H.)
| | - Bin Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (H.R.); (B.Z.); (T.W.); (X.H.)
| | - Xinwei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Z.); (X.L.); (C.P.)
| | - Tiantian Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (H.R.); (B.Z.); (T.W.); (X.H.)
| | - Xvchen Hou
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (H.R.); (B.Z.); (T.W.); (X.H.)
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Z.); (X.L.); (C.P.)
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Z.); (X.L.); (C.P.)
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (H.R.); (B.Z.); (T.W.); (X.H.)
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (H.R.); (B.Z.); (T.W.); (X.H.)
| |
Collapse
|
15
|
Langedijk JPM, Cox F, Johnson NV, van Overveld D, Le L, van den Hoogen W, Voorzaat R, Zahn R, van der Fits L, Juraszek J, McLellan JS, Bakkers MJG. Universal paramyxovirus vaccine design by stabilizing regions involved in structural transformation of the fusion protein. Nat Commun 2024; 15:4629. [PMID: 38821950 PMCID: PMC11143371 DOI: 10.1038/s41467-024-48059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
The Paramyxoviridae family encompasses medically significant RNA viruses, including human respiroviruses 1 and 3 (RV1, RV3), and zoonotic pathogens like Nipah virus (NiV). RV3, previously known as parainfluenza type 3, for which no vaccines or antivirals have been approved, causes respiratory tract infections in vulnerable populations. The RV3 fusion (F) protein is inherently metastable and will likely require prefusion (preF) stabilization for vaccine effectiveness. Here we used structure-based design to stabilize regions involved in structural transformation to generate a preF protein vaccine antigen with high expression and stability, and which, by stabilizing the coiled-coil stem region, does not require a heterologous trimerization domain. The preF candidate induces strong neutralizing antibody responses in both female naïve and pre-exposed mice and provides protection in a cotton rat challenge model (female). Despite the evolutionary distance of paramyxovirus F proteins, their structural transformation and local regions of instability are conserved, which allows successful transfer of stabilizing substitutions to the distant preF proteins of RV1 and NiV. This work presents a successful vaccine antigen design for RV3 and provides a toolbox for future paramyxovirus vaccine design and pandemic preparedness.
Collapse
Affiliation(s)
- Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio, Amsterdam, The Netherlands
| | - Freek Cox
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Litvinova VR, Rudometov AP, Rudometova NB, Kisakov DN, Borgoyakova MB, Kisakova LA, Starostina EV, Fando AA, Yakovlev VA, Tigeeva EV, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Sergeev AA, Ilyichev AA, Karpenko LI. DNA Vaccine Encoding a Modified Hemagglutinin Trimer of Avian Influenza A Virus H5N8 Protects Mice from Viral Challenge. Vaccines (Basel) 2024; 12:538. [PMID: 38793789 PMCID: PMC11126123 DOI: 10.3390/vaccines12050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The development of a safe and effective vaccine against avian influenza A virus (AIV) H5N8 is relevant due to the widespread distribution of this virus in the bird population and the existing potential risk of human infection, which can lead to significant public health concerns. Here, we developed an experimental pVAX-H5 DNA vaccine encoding a modified trimer of AIV H5N8 hemagglutinin. Immunization of BALB/c mice with pVAX-H5 using jet injection elicited high titer antibody response (the average titer in ELISA was 1 × 105), and generated a high level of neutralizing antibodies against H5N8 and T-cell response, as determined by ELISpot analysis. Both liquid and lyophilized forms of pVAX-H5 DNA vaccine provided 100% protection of immunized mice against lethal challenge with influenza A virus A/turkey/Stavropol/320-01/2020 (H5N8). The results obtained indicate that pVAX-H5 has good opportunities as a vaccine candidate against the influenza A virus (H5N8).
Collapse
Affiliation(s)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (V.R.L.); (N.B.R.); (D.N.K.); (M.B.B.); (L.A.K.); (E.V.S.); (A.A.F.); (E.V.T.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.S.); (A.A.I.); (L.I.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands viral escape pathways from imprinted host humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585891. [PMID: 38562862 PMCID: PMC10983950 DOI: 10.1101/2024.03.20.585891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An initial virus exposure can imprint antibodies such that future responses to antigenically drifted strains are dependent on the identity of the imprinting strain. Subsequent exposure to antigenically distinct strains followed by affinity maturation can guide immune responses toward generation of cross-reactive antibodies. How viruses evolve in turn to escape these imprinted broad antibody responses is unclear. Here, we used clonal antibody lineages from two human donors recognizing conserved influenza virus hemagglutinin (HA) epitopes to assess viral escape potential using deep mutational scanning. We show that even though antibody affinity maturation does restrict the number of potential escape routes in the imprinting strain through repositioning the antibody variable domains, escape is still readily observed in drifted strains and attributed to epistatic networks within HA. These data explain how influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
|
18
|
Rudometova NB, Fando AA, Kisakova LA, Kisakov DN, Borgoyakova MB, Litvinova VR, Yakovlev VA, Tigeeva EV, Vahitov DI, Sharabrin SV, Shcherbakov DN, Evseenko VI, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Ilyichev AA, Rudometov AP, Karpenko LI. Immunogenic and Protective Properties of Recombinant Hemagglutinin of Influenza A (H5N8) Virus. Vaccines (Basel) 2024; 12:143. [PMID: 38400127 PMCID: PMC10893068 DOI: 10.3390/vaccines12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we characterized recombinant hemagglutinin (HA) of influenza A (H5N8) virus produced in Chinese hamster ovary cells (CHO-K1s). Immunochemical analysis showed that the recombinant hemagglutinin was recognized by the serum of ferrets infected with influenza A (H5N8) virus, indicating that its antigenic properties were retained. Two groups of Balb/c mice were immunized with intramuscular injection of recombinant hemagglutinin or propiolactone inactivated A/Astrakhan/3212/2020 (H5N8) influenza virus. The results demonstrated that both immunogens induced a specific antibody response as determined by ELISA. Virus neutralization assay revealed that sera of immunized animals were able to neutralize A/turkey/Stavropol/320-01/2020 (H5N8) influenza virus-the average neutralizing titer was 2560. Immunization with both recombinant HA/H5 hemagglutinin and inactivated virus gave 100% protection against lethal H5N8 virus challenge. This study shows that recombinant HA (H5N8) protein may be a useful antigen candidate for developing subunit vaccines against influenza A (H5N8) virus with suitable immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Nadezhda B. Rudometova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Anastasia A. Fando
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Lyubov A. Kisakova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Denis N. Kisakov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Mariya B. Borgoyakova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Victoria R. Litvinova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Vladimir A. Yakovlev
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Elena V. Tigeeva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Danil I. Vahitov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Sergey V. Sharabrin
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Dmitriy N. Shcherbakov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Veronika I. Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Novosibirsk Region, Russia;
| | - Ksenia I. Ivanova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Andrei S. Gudymo
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Tatiana N. Ilyicheva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Vasiliy Yu. Marchenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Alexander A. Ilyichev
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Larisa I. Karpenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| |
Collapse
|
19
|
Ellis D, Dosey A, Boyoglu-Barnum S, Park YJ, Gillespie R, Syeda H, Hutchinson GB, Tsybovsky Y, Murphy M, Pettie D, Matheson N, Chan S, Ueda G, Fallas JA, Carter L, Graham BS, Veesler D, Kanekiyo M, King NP. Antigen spacing on protein nanoparticles influences antibody responses to vaccination. Cell Rep 2023; 42:113552. [PMID: 38096058 PMCID: PMC10801709 DOI: 10.1016/j.celrep.2023.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Immunogen design approaches aim to control the specificity and quality of antibody responses elicited by next-generation vaccines. Here, we use computational protein design to generate a nanoparticle vaccine platform based on the receptor-binding domain (RBD) of influenza hemagglutinin (HA) that enables precise control of antigen conformation and spacing. HA RBDs are presented as either monomers or native-like closed trimers that are connected to the underlying nanoparticle by a rigid linker that is modularly extended to precisely control antigen spacing. Nanoparticle immunogens with decreased spacing between trimeric RBDs elicit antibodies with improved hemagglutination inhibition and neutralization potency as well as binding breadth across diverse H1 HAs. Our "trihead" nanoparticle immunogen platform provides insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used in next-generation vaccines against influenza and other viruses.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nick Matheson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jorge A Fallas
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Swart M, Kuipers H, Milder F, Jongeneelen M, Ritschel T, Tolboom J, Muchene L, van der Lubbe J, Izquierdo Gil A, Veldman D, Huizingh J, Verspuij J, Schmit-Tillemans S, Blokland S, de Man M, Roozendaal R, Fox CB, Schuitemaker H, Capelle M, Langedijk JPM, Zahn R, Brandenburg B. Enhancing breadth and durability of humoral immune responses in non-human primates with an adjuvanted group 1 influenza hemagglutinin stem antigen. NPJ Vaccines 2023; 8:176. [PMID: 37952003 PMCID: PMC10640631 DOI: 10.1038/s41541-023-00772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models. The recombinant H1 stem antigen (50 µg) was administered to influenza-naïve non-human primates either with aluminum hydroxide [Al(OH)3] + NaCl, AS01B, or SLA-LSQ formulations at week 0, 8 and 34. These SLA-LSQ formulations comprised of varying ratios of the synthetic TLR4 agonist 'second generation synthetic lipid adjuvant' (SLA) with liposomal QS-21 (LSQ). A vaccine formulation with aluminum hydroxide or SLA-LSQ (starting at a 10:25 µg ratio) induced HA-specific antibodies and breadth of neutralization against a panel of influenza A group 1 pseudoviruses, comparable with vaccine formulated with AS01B, four weeks after the second immunization. A formulation with SLA-LSQ in a 5:2 μg ratio contained larger fused or aggregated liposomes and induced significantly lower humoral responses. Broadly HA stem-binding antibodies were detectable for the entire period after the second vaccine dose up to week 34, after which they were boosted by a third vaccine dose. These findings inform about potential adjuvant formulations in clinical trials with an H1 stem-based vaccine candidate.
Collapse
Affiliation(s)
- Maarten Swart
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Fin Milder
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Tina Ritschel
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | - Sven Blokland
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses 2023; 15:v15020558. [PMID: 36851772 PMCID: PMC9960574 DOI: 10.3390/v15020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
Collapse
|
22
|
Badten A, Ramirez A, Hernandez-Davies JE, Albin TJ, Jain A, Nakajima R, Felgner J, Davies DH, Wang SW. Protein Nanoparticle-Mediated Delivery of Recombinant Influenza Hemagglutinin Enhances Immunogenicity and Breadth of the Antibody Response. ACS Infect Dis 2023; 9:239-252. [PMID: 36607269 PMCID: PMC9926493 DOI: 10.1021/acsinfecdis.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/07/2023]
Abstract
The vast majority of seasonal influenza vaccines administered each year are derived from virus propagated in eggs using technology that has changed little since the 1930s. The immunogenicity, durability, and breadth of response would likely benefit from a recombinant nanoparticle-based approach. Although the E2 protein nanoparticle (NP) platform has been previously shown to promote effective cell-mediated responses to peptide epitopes, it has not yet been reported to deliver whole protein antigens. In this study, we synthesized a novel maleimido tris-nitrilotriacetic acid (NTA) linker to couple protein hemagglutinin (HA) from H1N1 influenza virus to the E2 NP, and we evaluated the HA-specific antibody responses using protein microarrays. We found that recombinant H1 protein alone is immunogenic in mice but requires two boosts for IgG to be detected and is strongly IgG1 (Th2) polarized. When conjugated to E2 NPs, IgG2c is produced leading to a more balanced Th1/Th2 response. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) significantly enhances the immunogenicity of H1-E2 NPs while retaining the Th1/Th2 balance. Interestingly, broader homo- and heterosubtypic cross-reactivity is also observed for conjugated H1-E2 with MPLA, compared to unconjugated H1 with or without MPLA. These results highlight the potential of an NP-based delivery of HA for tuning the immunogenicity, breadth, and Th1/Th2 balance generated by recombinant HA-based vaccination. Furthermore, the modularity of this protein-protein conjugation strategy may have utility for future vaccine development against other human pathogens.
Collapse
Affiliation(s)
- Alexander
J. Badten
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aaron Ramirez
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jenny E. Hernandez-Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Tyler J. Albin
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aarti Jain
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Rie Nakajima
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - D. Huw Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Szu-Wen Wang
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| |
Collapse
|
23
|
Ebel H, Benecke T, Vollmer B. Stabilisation of Viral Membrane Fusion Proteins in Prefusion Conformation by Structure-Based Design for Structure Determination and Vaccine Development. Viruses 2022; 14:1816. [PMID: 36016438 PMCID: PMC9415420 DOI: 10.3390/v14081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The membrane surface of enveloped viruses contains dedicated proteins enabling the fusion of the viral with the host cell membrane. Working with these proteins is almost always challenging because they are membrane-embedded and naturally metastable. Fortunately, based on a range of different examples, researchers now have several possibilities to tame membrane fusion proteins, making them amenable for structure determination and immunogen generation. This review describes the structural and functional similarities of the different membrane fusion proteins and ways to exploit these features to stabilise them by targeted mutational approaches. The recent determination of two herpesvirus membrane fusion proteins in prefusion conformation holds the potential to apply similar methods to this group of viral fusogens. In addition to a better understanding of the herpesviral fusion mechanism, the structural insights gained will help to find ways to further stabilise these proteins using the methods described to obtain stable immunogens that will form the basis for the development of the next generation of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Henriette Ebel
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Tim Benecke
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|