1
|
Nguyen AK, Schall PZ, Kidd JM. A map of canine sequence variation relative to a Greenland wolf outgroup. Mamm Genome 2024; 35:565-576. [PMID: 39088040 DOI: 10.1007/s00335-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
For over 15 years, canine genetics research relied on a reference assembly from a Boxer breed dog named Tasha (i.e., canFam3.1). Recent advances in long-read sequencing and genome assembly have led to the development of numerous high-quality assemblies from diverse canines. These assemblies represent notable improvements in completeness, contiguity, and the representation of gene promoters and gene models. Although genome graph and pan-genome approaches have promise, most genetic analyses in canines rely upon the mapping of Illumina sequencing reads to a single reference. The Dog10K consortium, and others, have generated deep catalogs of genetic variation through an alignment of Illumina sequencing reads to a reference genome obtained from a German Shepherd Dog named Mischka (i.e., canFam4, UU_Cfam_GSD_1.0). However, alignment to a breed-derived genome may introduce bias in genotype calling across samples. Since the use of an outgroup reference genome may remove this effect, we have reprocessed 1929 samples analyzed by the Dog10K consortium using a Greenland wolf (mCanLor1.2) as the reference. We efficiently performed remapping and variant calling using a GPU-implementation of common analysis tools. The resulting call set removes the variability in genetic differences seen across samples and breed relationships revealed by principal component analysis are not affected by the choice of reference genome. Using this sequence data, we inferred the history of population sizes and found that village dog populations experienced a 9-13 fold reduction in historic effective population size relative to wolves.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Weber CC. Disentangling cobionts and contamination in long-read genomic data using sequence composition. G3 (BETHESDA, MD.) 2024; 14:jkae187. [PMID: 39148415 PMCID: PMC11540323 DOI: 10.1093/g3journal/jkae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The recent acceleration in genome sequencing targeting previously unexplored parts of the tree of life presents computational challenges. Samples collected from the wild often contain sequences from several organisms, including the target, its cobionts, and contaminants. Effective methods are therefore needed to separate sequences. Though advances in sequencing technology make this task easier, it remains difficult to taxonomically assign sequences from eukaryotic taxa that are not well represented in databases. Therefore, reference-based methods alone are insufficient. Here, I examine how we can take advantage of differences in sequence composition between organisms to identify symbionts, parasites, and contaminants in samples, with minimal reliance on reference data. To this end, I explore data from the Darwin Tree of Life project, including hundreds of high-quality HiFi read sets from insects. Visualizing two-dimensional representations of read tetranucleotide composition learned by a variational autoencoder can reveal distinct components of a sample. Annotating the embeddings with additional information, such as coding density, estimated coverage, or taxonomic labels allows rapid assessment of the contents of a dataset. The approach scales to millions of sequences, making it possible to explore unassembled read sets, even for large genomes. Combined with interactive visualization tools, it allows a large fraction of cobionts reported by reference-based screening to be identified. Crucially, it also facilitates retrieving genomes for which suitable reference data are absent.
Collapse
Affiliation(s)
- Claudia C Weber
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
3
|
Hartley M, Anita L, Babalola K, Russell C, Yoldaş AK, Zulueta-Coarasa T. Pictures at an exhibition: How to share your imaging data. J Microsc 2024; 296:145-149. [PMID: 37648214 DOI: 10.1111/jmi.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Open access to data underpinning published results is a key pillar of scientific reproducibility. Making data available at scale also provides opportunities for data reuse, encouraging the development of new analysis approaches. In this poster article, accompanying a recorded talk, we will explain the benefits of publicly archiving your image data alongside your published manuscripts, as well as highlight what resources are available to do this. This will include the BioImage Archive, EMBL-EBI's new resource for biological image data, https://www.ebi.ac.uk/bioimage-archive/. We will look at how image data submission works, how to prepare in advance for archiving your data and upcoming developments.
Collapse
Affiliation(s)
- Matthew Hartley
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Liviu Anita
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kolawole Babalola
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Craig Russell
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Aybüke Küpcü Yoldaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Teresa Zulueta-Coarasa
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
4
|
Adkins P, Harley J, Brittain R, Scott-Somme K, Azzopardi F. The genome sequence of the John Dory, Zeus faber Linnaeus, 1758. Wellcome Open Res 2024; 9:150. [PMID: 38881949 PMCID: PMC11179049 DOI: 10.12688/wellcomeopenres.21140.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 06/18/2024] Open
Abstract
We present a genome assembly from an individual Zeus faber (the John Dory; Chordata; Actinopteri; Zeiformes; Zeidae). The genome sequence is 804.7 megabases in span. Most of the assembly is scaffolded into 22 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 16.72 kilobases in length.
Collapse
Affiliation(s)
- Patrick Adkins
- The Marine Biological Association, Plymouth, England, UK
| | - Joanna Harley
- The Marine Biological Association, Plymouth, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Beaven R, Denholm B. The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation. Biol Rev Camb Philos Soc 2024. [PMID: 39438273 DOI: 10.1111/brv.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Arthropods have integrated digestive and renal systems, which function to acquire and maintain homeostatically the substances they require for survival. The cryptonephridial complex (CNC) is an evolutionary novelty in which the renal organs and gut have been dramatically reorganised. Parts of the renal or Malpighian tubules (MpTs) form a close association with the surface of the rectum, and are surrounded by a novel tissue, the perinephric membrane, which acts to insulate the system from the haemolymph and thus allows tight regulation of ions and water into and out of the CNC. The CNC can reclaim water and solutes from the rectal contents and recycle these back into the haemolymph. Fluid flow in the MpTs runs counter to flow within the rectum. It is this countercurrent arrangement that underpins its powerful recycling capabilities, and represents one of the most efficient water conservation mechanisms in nature. CNCs appear to have evolved multiple times, and are present in some of the largest and most evolutionarily successful insect groups including the larvae of most Lepidoptera and in a major beetle lineage (Cucujiformia + Bostrichoidea), suggesting that the CNC is an important adaptation. Here we review the knowledge of this remarkable organ system gained over the past 200 years. We first focus on the CNCs of tenebrionid beetles, for which we have an in-depth understanding from physiological, structural and ultrastructural studies (primarily in Tenebrio molitor), which are now being extended by studies in Tribolium castaneum enabled by advances in molecular and microscopy approaches established for this species. These recent studies are beginning to illuminate CNC development, physiology and endocrine control. We then take a broader view of arthropod CNCs, phylogenetically mapping their reported occurrence to assess their distribution and likely evolutionary origins. We explore CNCs from an ecological viewpoint, put forward evidence that CNCs may primarily be adaptations for facing the challenges of larval life, and argue that their loss in many aquatic species could point to a primary function in conserving water in terrestrial species. Finally, by considering the functions of renal and digestive epithelia in insects lacking CNCs, as well as the typical architecture of these organs in relation to one another, we propose that ancestral features of these organs predispose them for the evolution of CNCs.
Collapse
Affiliation(s)
- Robin Beaven
- Hugh Robson Building, George Square, Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Barry Denholm
- Hugh Robson Building, George Square, Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
6
|
Krabberød AK, Stokke E, Thoen E, Skrede I, Kauserud H. The Ribosomal Operon Database: A Full-Length rDNA Operon Database Derived From Genome Assemblies. Mol Ecol Resour 2024:e14031. [PMID: 39428982 DOI: 10.1111/1755-0998.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Current rDNA reference sequence databases are tailored towards shorter DNA markers, such as parts of the 16/18S marker or the internally transcribed spacer (ITS) region. However, due to advances in long-read DNA sequencing technologies, longer stretches of the rDNA operon are increasingly used in environmental sequencing studies to increase the phylogenetic resolution. There is, therefore, a growing need for longer rDNA reference sequences. Here, we present the ribosomal operon database (ROD), which includes eukaryotic full-length rDNA operons fished from publicly available genome assemblies. Full-length operons were detected in 34.1% of the 34,701 examined eukaryotic genome assemblies from NCBI. In most cases (53.1%), more than one operon variant was detected, which can be due to intragenomic operon copy variability, allelic variation in non-haploid genomes, or technical errors from the sequencing and assembly process. The highest copy number found was 5947 in Zea mays. In total, 453,697 unique operons were detected, with 69,480 operon variant clusters remaining after intragenomic clustering at 99% sequence identity. The operon length varied extensively across eukaryotes, ranging from 4136 to 16,463 bp, which will lead to considerable polymerase chain reaction (PCR) bias during amplification of the entire operon. Clustering the full-length operons revealed that the different parts (i.e., 18S, 28S, and the hypervariable regions V4 and V9 of 18S) provide divergent taxonomic resolution, with 18S, the V4 and V9 regions being the most conserved. The ROD will be updated regularly to provide an increasing number of full-length rDNA operons to the scientific community.
Collapse
Affiliation(s)
- Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Embla Stokke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Ella Thoen
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Patsakis M, Provatas K, Baltoumas FA, Chantzi N, Mouratidis I, Pavlopoulos GA, Georgakopoulos-Soares I. MAFin: Motif Detection in Multiple Alignment Files. ARXIV 2024:arXiv:2410.11021v1. [PMID: 39483349 PMCID: PMC11527099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Motivation Genome and Proteome Alignments, represented by the Multiple Alignment File (MAF) format, have become a standard approach in the field of comparative genomics and proteomics. However, current approaches lack a direct method for motif detection within MAF files. To address this gap, we present MAFin, a novel tool that enables efficient motif detection and conservation analysis in MAF files, streamlining genomic and proteomic research. Results We developed MAFin, the first motif detection tool for Multiple Alignment Format files. MAFin enables the multithreaded search of conserved motifs using three approaches: 1) by using user-specified k-mers to search the sequences. 2) with regular expressions, in which case one or more patterns are searched, and 3) with predefined Position Weight Matrices. Once the motif has been found, MAFin detects the motif instances and calculates the conservation across the aligned sequences. MAFin also calculates a conservation percentage, which provides information about the conservation levels of each motif across the aligned sequences, based on the number of matches relative to the length of the motif. A set of statistics enable the interpretation of each motif's conservation level, and the detected motifs are exported in JSON and CSV files for downstream analyses. Availability MAFin is released as a Python package under the GPL license as a multi-platform application and is available at: https://github.com/Georgakopoulos-Soares-lab/MAFin.
Collapse
Affiliation(s)
- Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Kimonas Provatas
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The rich species diversity of bats encompasses extraordinary adaptations, including extreme longevity and tolerance to infectious disease. While traditional approaches using genetic screens in model organisms have uncovered some fundamental processes underlying these traits, model organisms do not possess the variation required to understand the evolution of traits with complex genetic architectures. In contrast, the advent of genomics at tree-of-life scales enables us to study the genetic interactions underlying these processes by leveraging millions of years of evolutionary trial-and-error. Here, we use the rich species diversity of the genus Myotis - one of the longest-living clades of mammals - to study the evolution of longevity-associated traits and infectious disease using functional evolutionary genomics. We generated reference genome assemblies and cell lines for 8 closely-related (~11 MYA) species of Myotis rich in phenotypic and life history diversity. Using genome-wide screens of positive selection, analysis of structural variation and copy number variation, and functional experiments in primary cell lines, we identify new patterns of adaptation in longevity, cancer resistance, and viral interactions both within Myotis and across bats. We find that the rapid evolution of lifespan in Myotis has some of the most significant variations in cancer risk across mammals, and demonstrate a unique DNA damage response in the long-lived M. lucifugus using primary cell culture models. Furthermore, we find evidence of abundant adaptation in response to DNA viruses, but not RNA viruses, in Myotis and other bats. This is in contrast to these patterns of adaptation in humans, which might contribute to the importance of bats as a reservoir of zoonotic viruses. Together, our results demonstrate the utility of leveraging natural variation to understand the genomics of traits with implications for human health and suggest important pleiotropic relationships between infectious disease tolerance and cancer resistance.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
9
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
10
|
Thomas Thorpe JA. Phylogenomics supports a single origin of terrestriality in isopods. Proc Biol Sci 2024; 291:20241042. [PMID: 39471855 PMCID: PMC11521608 DOI: 10.1098/rspb.2024.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024] Open
Abstract
Terrestriality, the adaptation to life on land, is one of the key evolutionary transitions, occurring numerous times across the tree of life. Within Arthropoda, there have been several independent transitions: in hexapods, myriapods, arachnids and isopods. Isopoda is a morphologically diverse order within Crustacea, with species adapted to almost every environment on Earth. The order is divided into 11 suborders with the most speciose, Oniscidea, including terrestrial isopods such as woodlice and sea-slaters. Recent molecular phylogenetic studies have challenged traditional isopod morphological taxonomy, suggesting that several well-accepted suborders, including Oniscidea, may be non-monophyletic. This implies that terrestriality may have evolved multiple times. Current molecular hypotheses, however, are based on limited sequence data. Here, I collate available genome and transcriptome datasets for 36 isopods and four peracarid crustaceans from public sources, generate assemblies and use 970 single-copy orthologues to estimate isopod relationships and divergence times with molecular dating. The resulting phylogenetic analyses support monophyly of terrestrial isopods and suggest conflicting relationships based on nuclear ribosomal RNA sequences may be caused by long-branch attraction. Dating analyses suggest a Permo-Carboniferous origin of isopod terrestriality, much more recently than other terrestrial arthropods.
Collapse
|
11
|
Ye X, Yang Y, Zhao X, Fang Q, Ye G. The state of parasitoid wasp genomics. Trends Parasitol 2024; 40:914-929. [PMID: 39227194 DOI: 10.1016/j.pt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Parasitoid wasps represent a group of parasitic insects with high species diversity that have played a pivotal role in biological control and evolutionary studies. Over the past 20 years, developments in genomics have greatly enhanced our understanding of the biology of these species. Technological leaps in sequencing have facilitated the improvement of genome quality and quantity, leading to the availability of hundreds of parasitoid wasp genomes. Here, we summarize recent progress in parasitoid wasp genomics, focusing on the evolution of genome size (GS) and the genomic basis of several key traits. We also discuss the contributions of genomics in studying venom evolution and endogenization of viruses. Finally, we advocate for increased sequencing and functional research to better understand parasitoid biology and enhance biological control.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Mc Cartney AM, Formenti G, Mouton A, De Panis D, Marins LS, Leitão HG, Diedericks G, Kirangwa J, Morselli M, Salces-Ortiz J, Escudero N, Iannucci A, Natali C, Svardal H, Fernández R, De Pooter T, Joris G, Strazisar M, Wood JMD, Herron KE, Seehausen O, Watts PC, Shaw F, Davey RP, Minotto A, Fernández JM, Böhne A, Alegria C, Alioto T, Alves PC, Amorim IR, Aury JM, Backstrom N, Baldrian P, Baltrunaite L, Barta E, BedHom B, Belser C, Bergsten J, Bertrand L, Bilandija H, Binzer-Panchal M, Bista I, Blaxter M, Borges PAV, Dias GB, Bosse M, Brown T, Bruggmann R, Buena-Atienza E, Burgin J, Buzan E, Cariani A, Casadei N, Chiara M, Chozas S, Čiampor F, Crottini A, Cruaud C, Cruz F, Dalen L, De Biase A, Del Campo J, Delic T, Dennis AB, Derks MFL, Diroma MA, Djan M, Duprat S, Eleftheriadi K, Feulner PGD, Flot JF, Forni G, Fosso B, Fournier P, Fournier-Chambrillon C, Gabaldon T, Garg S, Gissi C, Giupponi L, Gomez-Garrido J, González J, Grilo ML, Grüning B, Guerin T, Guiglielmoni N, Gut M, Haesler MP, Hahn C, Halpern B, Harrison PW, Heintz J, Hindrikson M, Höglund J, Howe K, Hughes GM, Istace B, Cock MJ, Janžekovič F, Jonsson ZO, Joye-Dind S, Koskimäki JJ, Krystufek B, Kubacka J, Kuhl H, Kusza S, Labadie K, Lähteenaro M, Lantz H, Lavrinienko A, Leclère L, Lopes RJ, Madsen O, Magdelenat G, Magoga G, Manousaki T, Mappes T, Marques JP, Redondo GIM, Maumus F, McCarthy SA, Megens HJ, Melo-Ferreira J, Mendes SL, Montagna M, Moreno J, Mosbech MB, Moura M, Musilova Z, Myers E, Nash WJ, Nater A, Nicholson P, Niell M, Nijland R, Noel B, Noren K, Oliveira PH, Olsen RA, Ometto L, Oomen RA, Ossowski S, Palinauskas V, Palsson S, Panibe JP, Pauperio J, Pavlek M, Payen E, Pawlowska J, Pellicer J, Pesole G, Pimenta J, Pippel M, Pirttilä AM, Poulakakis N, Rajan J, M C Rego R, Resendes R, Resl P, Riesgo A, Rodin-Morch P, Soares AER, Fernandes CR, Romeiras MM, Roxo G, Rüber L, Ruiz-Lopez MJ, Saarma U, da Silva LP, Sim-Sim M, Soler L, Sousa VC, Santos CS, Spada A, Stefanovic M, Steger V, Stiller J, Stöck M, Struck TH, Sudasinghe H, Tapanainen R, Tellgren-Roth C, Trindade H, Tukalenko Y, Urso I, Vacherie B, Van Belleghem SM, Van Oers K, Vargas-Chavez C, Velickovic N, Vella N, Vella A, Vernesi C, Vicente S, Villa S, Pettersson OV, Volckaert FAM, Voros J, Wincker P, Winkler S, Ciofi C, Waterhouse RM, Mazzoni CJ. The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics. NPJ BIODIVERSITY 2024; 3:28. [PMID: 39289538 PMCID: PMC11408602 DOI: 10.1038/s44185-024-00054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 09/19/2024]
Abstract
A genomic database of all Earth's eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP.
Collapse
Affiliation(s)
- Ann M Mc Cartney
- Genomics Institute, University of California, Santa Cruz, CA, USA.
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Alice Mouton
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- InBios-Conservation Genetics Laboratory, University of Liege, Liege, Belgium
| | - Diego De Panis
- Leibniz Institut für Zoo und Wildtierforschung, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Luísa S Marins
- Leibniz Institut für Zoo und Wildtierforschung, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | | | | | - Joseph Kirangwa
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Judit Salces-Ortiz
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Nuria Escudero
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Rosa Fernández
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert Joris
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Katie E Herron
- School of Biology and Environmental Science, University College Dublin, Belfield, Ireland
| | - Ole Seehausen
- Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology & Evolution, Eawag, Kastanienbaum, Switzerland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Felix Shaw
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Robert P Davey
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - José M Fernández
- Barcelona Supercomputing Center; Spanish National Bioinformatics Institute, ELIXIR Spain, Getafe, Spain
| | - Astrid Böhne
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Bonn, Germany
| | - Carla Alegria
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Tyler Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Paulo C Alves
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, InBIO Laboratorio Associado, Universidade do Porto, Vairao, Portugal
- Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairao, Vairao, Portugal
| | - Isabel R Amorim
- University of the Azores, cE3c-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, Rua Capitão João d´Ávila, Pico da Urze, Angra do Heroísmo, Portugal
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Niclas Backstrom
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | | | - Endre Barta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bertrand BedHom
- Institut de Systematique, Evolution, Biodiversite, Museum National d Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Faculty of Science, Stockholm University, Stockholm, Sweden
| | - Laurie Bertrand
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Mahesh Binzer-Panchal
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Iliana Bista
- Senckenberg Research Institute, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Wellcome CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Paulo A V Borges
- University of the Azores, cE3c-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, Rua Capitão João d´Ávila, Pico da Urze, Angra do Heroísmo, Portugal
| | - Guilherme Borges Dias
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Mirte Bosse
- VU University Amsterdam, Amsterdam, The Netherlands
- Animal Breeding & Genomics, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen University & Research, Wageningen, The Netherlands
| | - Tom Brown
- Leibniz Institut für Zoo und Wildtierforschung, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tubingen, Tubingen, Germany
- NGS Competence Center Tubingen, Tubingen, Germany
| | - Josephine Burgin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elena Buzan
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia
- Faculty of Environmental Protection, Velenje, Slovenia
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum Universitá di Bologna, Bologna, Italy
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tubingen, Tubingen, Germany
- NGS Competence Center Tubingen, Tubingen, Germany
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Sergio Chozas
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Sociedade Portuguesa de Botânica, Lisbon, Portugal
| | - Fedor Čiampor
- Department of Biodiversity and Ecology, Plant Science and Biodiversity Centre Slovak Academy of Sciences, Bratislava, Slovakia
| | - Angelica Crottini
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, InBIO Laboratorio Associado, Universidade do Porto, Vairao, Portugal
- Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairao, Vairao, Portugal
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Love Dalen
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Alessio De Biase
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Javier Del Campo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Teo Delic
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Alice B Dennis
- University of Namur, Department of Biology, URBE, ILEE, Namur, Belgium
| | - Martijn F L Derks
- Animal Breeding & Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Mihajla Djan
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Simone Duprat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Klara Eleftheriadi
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Philine G D Feulner
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology & Evolution, Kastanienbaum, Switzerland
| | - Jean-François Flot
- Department of Organismal Biology, Universite libre de Bruxelles, Brussels, Belgium
| | - Giobbe Forni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum Universitá di Bologna, Bologna, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Pascal Fournier
- Groupe de Recherche et d Etude pour la Gestion de l Environnement, Villandraut, France
| | | | - Toni Gabaldon
- Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERINFEC, Instituto Carlos III, Barcelona, Spain
| | - Shilpa Garg
- NNF Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carmela Gissi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Luca Giupponi
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas CRC Ge.S.Di.Mont., University of Milan, Milan, Italy
- Department of Agricultural and Environmental Sciences-Production, Landscape and Agroenergy DiSAA, University of Milan, Milan, Italy
| | - Jessica Gomez-Garrido
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Miguel L Grilo
- Marine and Environmental Sciences Centre, Aquatic Research Network, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Portugal
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas Guerin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marcel P Haesler
- Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology & Evolution, Eawag, Kastanienbaum, Switzerland
| | - Christoph Hahn
- Department of Biology, University of Graz, Graz, Austria
| | - Balint Halpern
- MME BirdLife Hungary, Budapest, Hungary
- Doctoral School of Biology, Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, Budapest, Hungary
| | - Peter W Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julia Heintz
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jacob Höglund
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Ireland
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Mark J Cock
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universite, UPMC University Paris 06, Paris, France
- France Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Franc Janžekovič
- University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Sagane Joye-Dind
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Boris Krystufek
- Slovenian Museum of Natural History, Ljubljana, Slovenia
- Science and Research Centre Koper, Koper, Slovenia
| | - Justyna Kubacka
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Heiner Kuhl
- Department IV Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Szilvia Kusza
- University of Debrecen, Centre for Agricultural Genomics and Biotechnology, Debrecen, Hungary
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Meri Lähteenaro
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Faculty of Science, Stockholm University, Stockholm, Sweden
| | - Henrik Lantz
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Anton Lavrinienko
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland
| | - Lucas Leclère
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Ricardo Jorge Lopes
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
| | - Ole Madsen
- Animal Breeding & Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Giulia Magoga
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Tereza Manousaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Joao Pedro Marques
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, InBIO Laboratorio Associado, Universidade do Porto, Vairao, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairao, Vairao, Portugal
| | | | - Florian Maumus
- Universite Paris Saclay, INRAE, URGI, Versailles, France
| | - Shane A McCarthy
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Hendrik-Jan Megens
- Animal Breeding & Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jose Melo-Ferreira
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, InBIO Laboratorio Associado, Universidade do Porto, Vairao, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairao, Vairao, Portugal
- Departamento de Biologia, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Sofia L Mendes
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interuniversity Center for Studies on Bioinspired Agro Environmental Technology, University of Naples Federico II, Naples, Italy
| | - Joao Moreno
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- MARE Marine and Environmental Sciences Centre, ARNET Aquatic Research Network, Lisboa, Portugal
| | - Mai-Britt Mosbech
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Mónica Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- UNESCO, Chair Land Within Sea Biodiversity & Sustainability in Atlantic Islands, Portugal
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Will J Nash
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Alexander Nater
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Manuel Niell
- Andorra Research and Innovation, Sant Julià de Lòria, Andorra
| | - Reindert Nijland
- Marine Animal Ecology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Benjamin Noel
- University of the Azores, cE3c-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, Rua Capitão João d´Ávila, Pico da Urze, Angra do Heroísmo, Portugal
| | - Karin Noren
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Remi-Andre Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- University of New Brunswick Saint John, Saint John, New Brunswick, Canada
| | - Stephan Ossowski
- Institute for Medical Genetics and Applied Genomics, University of Tubingen, Tubingen, Germany
- NGS Competence Center Tubingen (NCCT), University of Tubingen, Tubingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tubingen, Tubingen, Germany
| | | | - Snaebjorn Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Jerome P Panibe
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Joana Pauperio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Emilie Payen
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Jaume Pellicer
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., Parc de Montjüic, Barcelona, Spain
| | - Graziano Pesole
- University of Bari Aldo Moro, Department of Biosciences, Biotechnology and Environment; Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Joao Pimenta
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, InBIO Laboratorio Associado, Universidade do Porto, Vairao, Portugal
- Wellcome Sanger Institute, Cambridge, UK
| | - Martin Pippel
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | | | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Voutes University Campus, Irakleio, Greece
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio, Greece
| | - Jeena Rajan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rúben M C Rego
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- UNESCO, Chair Land Within Sea Biodiversity & Sustainability in Atlantic Islands, Portugal
| | - Roberto Resendes
- Universidade dos Acores, Departamento de Biologia, Ponta Delgada, Portugal
| | - Philipp Resl
- Department of Biology, University of Graz, Graz, Austria
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | | | - Andre E R Soares
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Carlos Rodriguez Fernandes
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria M Romeiras
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Portugal Centre for Ecology, Evolution and Environmental Changes, Lisbon, Portugal
| | - Guilherme Roxo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- UNESCO, Chair Land Within Sea Biodiversity & Sustainability in Atlantic Islands, Portugal
| | - Lukas Rüber
- Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Maria Jose Ruiz-Lopez
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER of Epidemiology and Public Health, Granada, Spain
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Luis P da Silva
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, InBIO Laboratorio Associado, Universidade do Porto, Vairao, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairao, Vairao, Portugal
| | - Manuela Sim-Sim
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Museu Nacional de História Natural e da Ciência, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Lucile Soler
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Vitor C Sousa
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Carla Sousa Santos
- MARE Marine and Environmental Sciences Centre, ARNET Aquatic Research Network, Lisboa, Portugal
| | - Alberto Spada
- Department of Agricultural and Environmental Sciences Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Milomir Stefanovic
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Viktor Steger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Josefin Stiller
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Stöck
- Department IV Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Torsten H Struck
- Natural History Museum, University of Oslo, Blindern, Oslo, Norway
| | - Hiranya Sudasinghe
- Naturhistorisches Museum Bern, Bern, Switzerland
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Christian Tellgren-Roth
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Helena Trindade
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Yevhen Tukalenko
- Institute for Nuclear Research of the NAS of Ukraine, Kyiv, Ukraine
| | - Ilenia Urso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Benoit Vacherie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Steven M Van Belleghem
- Ecology, Evolution and Conservation Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Kees Van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Nevena Velickovic
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Noel Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre-Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Sara Vicente
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- ERISA Escola Superior de Saúde Ribeiro Sanches, IPLUSO, Lisboa, Portugal
| | - Sara Villa
- Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, Italy
- Department of Agricultural and Environmental Sciences, University of Milan via Giovanni Celoria 2, Milan, Italy
| | - Olga Vinnere Pettersson
- SciLifeLab, Solna, Sweden
- Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Judit Voros
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sylke Winkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institut für Zoo und Wildtierforschung, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
13
|
Heckenhauer J, Plotkin D, Martinez JI, Bethin J, Pauls SU, Frandsen PB, Kawahara AY. Genomic resources of aquatic Lepidoptera, Elophila obliteralis and Hyposmocoma kahamanoa, reveal similarities with Trichoptera in amino acid composition of major silk genes. G3 (BETHESDA, MD.) 2024; 14:jkae093. [PMID: 38722626 PMCID: PMC11373647 DOI: 10.1093/g3journal/jkae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 09/06/2024]
Abstract
While most species of butterflies and moths (Lepidoptera) have entirely terrestrial life histories, ∼0.5% of the described species are known to have an aquatic larval stage. Larvae of aquatic Lepidoptera are similar to caddisflies (Trichoptera) in that they use silk to anchor themselves to underwater substrates or to build protective cases. However, the physical properties and genetic elements of silks in aquatic Lepidoptera remain unstudied, as most research on lepidopteran silk has focused on the commercially important silkworm, Bombyx mori. Here, we provide high-quality PacBio HiFi genome assemblies of 2 distantly-related aquatic Lepidoptera species [Elophila obliteralis (Pyraloidea: Crambidae) and Hyposmocoma kahamanoa (Gelechioidea: Cosmopterigidae)]. As a step toward understanding the evolution of underwater silk in aquatic Lepidoptera, we used the genome assemblies and compared them to published genetic data of aquatic and terrestrial Lepidoptera. Sequences of the primary silk protein, h-fibroin, in aquatic moths have conserved termini and share a basic motif structure with terrestrial Lepidoptera. However, these sequences were similar to aquatic Trichoptera in that the percentage of positively and negatively charged amino acids was much higher than in terrestrial Lepidoptera, indicating a possible adaptation of silks to aquatic environments.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- Senckenberg Research Institute and Natural History Museum Frankfurt, Terrestrial Zoology, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - David Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jose I Martinez
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jacob Bethin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Steffen U Pauls
- Senckenberg Research Institute and Natural History Museum Frankfurt, Terrestrial Zoology, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Paul B Frandsen
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Powell A, Heckenhauer J, Pauls SU, Ríos-Touma B, Kuranishi RB, Holzenthal RW, Razuri-Gonzales E, Bybee S, Frandsen PB. Evolution of Opsin Genes in Caddisflies (Insecta: Trichoptera). Genome Biol Evol 2024; 16:evae185. [PMID: 39176990 PMCID: PMC11381090 DOI: 10.1093/gbe/evae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Insects have evolved complex and diverse visual systems in which light-sensing protein molecules called "opsins" couple with a chromophore to form photopigments. Insect photopigments group into three major gene families based on wavelength sensitivity: long wavelength (LW), short wavelength (SW), and ultraviolet wavelength (UV). In this study, we identified 123 opsin sequences from whole-genome assemblies across 25 caddisfly species (Insecta: Trichoptera). We discovered the LW opsins have the most diversity across species and form two separate clades in the opsin gene tree. Conversely, we observed a loss of the SW opsin in half of the trichopteran species in this study, which might be associated with the fact that caddisflies are active during low-light conditions. Lastly, we found a single copy of the UV opsin in all the species in this study, with one exception: Athripsodes cinereus has two copies of the UV opsin and resides within a clade of caddisflies with colorful wing patterns.
Collapse
Affiliation(s)
- Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Blanca Ríos-Touma
- Facultad de Ingenierías y Ciencias Aplicadas, Ingeniería Ambiental, Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Ryoichi B Kuranishi
- Graduate School of Science, Chiba University, Chiba, Japan
- Kanagawa Institute of Technology, Kanagawa, Japan
| | | | | | - Seth Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
16
|
Augustijnen H, Lucek K. Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species. Mol Ecol 2024; 33:e17488. [PMID: 39119885 DOI: 10.1111/mec.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
17
|
Corominas M, Marquès-Bonet T, Arnedo M, Bayés M, Belmonte J, Escrivà H, Fernández R, Gabaldón T, Garnatje T, Germain J, Niell M, Palero F, Pons J, Puigdomènech P, Arroyo V, Cuevas-Caballé C, Obiol JF, Gut I, Gut M, Hidalgo O, Izquierdo-Arànega G, Pérez-Sorribes L, Righi E, Riutort M, Vallès J, Rozas J, Alioto T, Guigó R. The Catalan initiative for the Earth BioGenome Project: contributing local data to global biodiversity genomics. NAR Genom Bioinform 2024; 6:lqae075. [PMID: 39022326 PMCID: PMC11252852 DOI: 10.1093/nargab/lqae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The Catalan Initiative for the Earth BioGenome Project (CBP) is an EBP-affiliated project network aimed at sequencing the genome of the >40 000 eukaryotic species estimated to live in the Catalan-speaking territories (Catalan Linguistic Area, CLA). These territories represent a biodiversity hotspot. While covering less than 1% of Europe, they are home to about one fourth of all known European eukaryotic species. These include a high proportion of endemisms, many of which are threatened. This trend is likely to get worse as the effects of global change are expected to be particularly severe across the Mediterranean Basin, particularly in freshwater ecosystems and mountain areas. Following the EBP model, the CBP is a networked organization that has been able to engage many scientific and non-scientific partners. In the pilot phase, the genomes of 52 species are being sequenced. As a case study in biodiversity conservation, we highlight the genome of the Balearic shearwater Puffinus mauretanicus, sequenced under the CBP umbrella.
Collapse
Affiliation(s)
- Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (IBE, UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Miquel A Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Mònica Bayés
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jordina Belmonte
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Hector Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Rosa Fernández
- Institute of Evolutionary Biology (IBE, UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Jardí Botànic Marimurtra - Fundació Carl Faust, 17300 Blanes, Catalonia, Spain
| | - Josep Germain
- Institució Catalana d’Història Natural, 08001 Barcelona, Catalonia, Spain
| | - Manel Niell
- Andorra Recerca + Innovació (ARI), AD600 Sant Julià de Lòria, Andorra
| | - Ferran Palero
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Paterna, Valencia, Spain
| | - Joan Pons
- Departament de Biodiversitat Animal i Microbiana, Institut Mediterrani d’Estudis Avançats (CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Pere Puigdomènech
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
- Centre de Recerca en Agrigenòmica, CSIC/IRTA/UAB/UB, 08193 Bellaterra, Catalonia, Spain
| | - Vanesa Arroyo
- Andorra Recerca + Innovació (ARI), AD600 Sant Julià de Lòria, Andorra
| | - Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Joan Ferrer Obiol
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ivo Gut
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Gut
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oriane Hidalgo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Royal Botanic Gardens, Kew, TW9 3DS Richmond, UK
| | - Guillem Izquierdo-Arànega
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Laia Pérez-Sorribes
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Estación Biológica de Doñana, CSIC, 41092 Sevilla, Spain
| | - Emilio Righi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Joan Vallès
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Tyler Alioto
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Roderic Guigó
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Li H, Durbin R. Genome assembly in the telomere-to-telomere era. Nat Rev Genet 2024; 25:658-670. [PMID: 38649458 DOI: 10.1038/s41576-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Genome sequences largely determine the biology and encode the history of an organism, and de novo assembly - the process of reconstructing the genome sequence of an organism from sequencing reads - has been a central problem in bioinformatics for four decades. Until recently, genomes were typically assembled into fragments of a few megabases at best, but now technological advances in long-read sequencing enable the near-complete assembly of each chromosome - also known as telomere-to-telomere assembly - for many organisms. Here, we review recent progress on assembly algorithms and protocols, with a focus on how to derive near-telomere-to-telomere assemblies. We also discuss the additional developments that will be required to resolve remaining assembly gaps and to assemble non-diploid genomes.
Collapse
Affiliation(s)
- Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Richard Durbin
- Department of Genetics, Cambridge University, Cambridge, UK.
| |
Collapse
|
19
|
Blommaert J, Sandoval-Castillo J, Beheregaray LB, Wellenreuther M. Peering into the gaps: Long-read sequencing illuminates structural variants and genomic evolution in the Australasian snapper. Genomics 2024; 116:110929. [PMID: 39216708 DOI: 10.1016/j.ygeno.2024.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Even before genome sequencing, genetic resources have supported species management and breeding programs. Current technologies, such as long-read sequencing, resolve complex genomic regions, like those rich in repeats or high in GC content. Improved genome contiguity enhances accuracy in identifying structural variants (SVs) and transposable elements (TEs). We present an improved genome assembly and SV catalogue for the Australasian snapper (Chrysophrys auratus). The new assembly is more contiguous, allowing for putative identification of 14 centromeres and transfer of 26,115 gene annotations from yellowfin seabream. Compared to the previous assembly, 35,000 additional SVs, including larger and more complex rearrangements, were annotated. SVs and TEs exhibit a distribution pattern skewed towards chromosome ends, likely influenced by recombination. Some SVs overlap with growth-related genes, underscoring their significance. This upgraded genome serves as a foundation for studying natural and artificial selection, offers a reference for related species, and sheds light on genome dynamics shaped by evolution.
Collapse
Affiliation(s)
- Julie Blommaert
- The New Zealand Institute for Plant and Food Research, Nelson, New Zealand.
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Jeiter J, Smets E. Comparative morphology at a crossroads. AMERICAN JOURNAL OF BOTANY 2024; 111:e16392. [PMID: 39148327 DOI: 10.1002/ajb2.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Morphology has been the fundamental and most important source of information in biology. We strongly believe that in the current molecular era of biology, comparative morphology still has an important role to play in understanding life on Earth and ecosystem functioning, bridging the knowledge gap between evolution, systematics, and ecology.
Collapse
Affiliation(s)
- Julius Jeiter
- Chair of Botany, Faculty of Biology, TUD Dresden University of Technology, Dresden, 01062, Germany
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, Bonn, 53115, Germany
| | - Erik Smets
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg 31, Box 2435, Heverlee, 3001, Belgium
| |
Collapse
|
21
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
22
|
Adams S, Pires-daSilva A. Non-Mendelian transmission of X chromosomes: mechanisms and impact on sex ratios and population dynamics in different breeding systems. Biochem Soc Trans 2024; 52:1777-1784. [PMID: 39149984 DOI: 10.1042/bst20231411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The non-Mendelian transmission of sex chromosomes during gametogenesis carries significant implications, influencing sex ratios and shaping evolutionary dynamics. Here we focus on known mechanisms that drive non-Mendelian inheritance of X chromosomes during spermatogenesis and their impact on population dynamics in species with different breeding systems. In Drosophila and mice, X-linked drivers targeting Y-bearing sperm for elimination or limiting their fitness, tend to confer unfavourable effects, prompting the evolution of suppressors to mitigate their impact. This leads to a complex ongoing evolutionary arms race to maintain an equal balance of males and females. However, in certain insects and nematodes with XX/X0 sex determination, the preferential production of X-bearing sperm through atypical meiosis yields wild-type populations with highly skewed sex ratios, suggesting non-Mendelian transmission of the X may offer selective advantages in these species. Indeed, models suggest X-meiotic drivers could bolster population size and persistence under certain conditions, challenging the conventional view of their detrimental effects. Furthering our understanding of the diverse mechanisms and evolutionary consequences of non-Mendelian transmission of X chromosomes will provide insights into genetic inheritance, sex determination, and population dynamics, with implications for fundamental research and practical applications.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
23
|
Fields O, Hammond MJ, Xu X, O'Neill EC. Advances in euglenoid genomics: unravelling the fascinating biology of a complex clade. Trends Genet 2024:S0168-9525(24)00173-2. [PMID: 39147613 DOI: 10.1016/j.tig.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Euglenids have long been studied due to their unique physiology and versatile metabolism, providing underpinnings for much of our understanding of photosynthesis and biochemistry, and a growing opportunity in biotechnology. Until recently there has been a lack of genetic studies due to their large and complex genomes, but recently new technologies have begun to unveil their genetic capabilities. Whilst much research has focused on the model organism Euglena gracilis, other members of the euglenids have now started to receive due attention. Currently only poor nuclear genome assemblies of E. gracilis and Rhabdomonas costata are available, but there are many more plastid genome sequences and an increasing number of transcriptomes. As more assemblies become available, there are great opportunities to understand the fundamental biology of these organisms and to exploit them for biotechnology.
Collapse
Affiliation(s)
- Oskar Fields
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; These authors contributed equally
| | - Michael J Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic; These authors contributed equally
| | - Xiao Xu
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; These authors contributed equally
| | - Ellis C O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
24
|
Hjelmen CE. Genome size and chromosome number are critical metrics for accurate genome assembly assessment in Eukaryota. Genetics 2024; 227:iyae099. [PMID: 38869251 DOI: 10.1093/genetics/iyae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The number of genome assemblies has rapidly increased in recent history, with NCBI databases reaching over 41,000 eukaryotic genome assemblies across about 2,300 species. Increases in read length and improvements in assembly algorithms have led to increased contiguity and larger genome assemblies. While this number of assemblies is impressive, only about a third of these assemblies have corresponding genome size estimations for their respective species on publicly available databases. In this paper, genome assemblies are assessed regarding their total size compared to their respective publicly available genome size estimations. These deviations in size are assessed related to genome size, kingdom, sequencing platform, and standard assembly metrics, such as N50 and BUSCO values. A large proportion of assemblies deviate from their estimated genome size by more than 10%, with increasing deviations in size with increased genome size, suggesting nonprotein coding and structural DNA may be to blame. Modest differences in performance of sequencing platforms are noted as well. While standard metrics of genome assessment are more likely to indicate an assembly approaching the estimated genome size, much of the variation in this deviation in size is not explained with these raw metrics. A new, proportional N50 metric is proposed, in which N50 values are made relative to the average chromosome size of each species. This new metric has a stronger relationship with complete genome assemblies and, due to its proportional nature, allows for a more direct comparison across assemblies for genomes with variation in sizes and architectures.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology, Utah Valley University, 800 W. University Parkway, Orem, UT 84058, USA
| |
Collapse
|
25
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
26
|
Rohlfing K, Grewoldt M, Cordellier M, Dobler S. Evidence for feminized genetic males in a flea beetle using newly identified X-linked markers. Ecol Evol 2024; 14:e70123. [PMID: 39135725 PMCID: PMC11318108 DOI: 10.1002/ece3.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024] Open
Abstract
The equilibrium of sex ratios in sexually reproducing species is often disrupted by various environmental and genetic factors, including endosymbionts like Wolbachia. In this study, we explore the highly female-biased sex ratio observed in the flea beetle, Altica lythri, and its underlying mechanisms. Ancient hybridization events between Altica species have led to mitochondrial DNA introgression, resulting in distinct mitochondrial haplotypes that go along with different Wolbachia infections (HT1-wLytA1, HT1*- uninfected, HT2-wLytA2, and HT3-wLytB). Notably, beetles with some haplotypes exclusively produce female offspring, suggesting potential Wolbachia-induced phenomena such as feminization of genetic males. However, the observed female bias could also be a consequence of the ancient hybridization resulting in nuclear-cytoplasmic conflicts between introgressed mtDNA and nuclear genes. Through transcriptomic analysis and the program SEX-DETector, we established markers for genotypic sex differentiation for A. lythri, enabling genetic sexing via qPCR. Our findings suggest that feminization of genetic males is contributing to the skewed sex ratios, highlighting the intricate dynamics of sex determination and reproductive strategies in this flea beetle. This study provides valuable insights into the dynamics of genetic conflicts, endosymbionts, and sex ratios, revealing the novel phenomenon of genetic male feminization in the flea beetle A. lythri.
Collapse
Affiliation(s)
- Kim Rohlfing
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
| | - Malte Grewoldt
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
- Present address:
Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Mathilde Cordellier
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
- Present address:
Institut für Biowissenschaften, Genetik – Populationsgenetik, Universität RostockRostockGermany
| | - Susanne Dobler
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
| |
Collapse
|
27
|
Lukhtanov VA, Dantchenko AV. Cryptic Taxa Revealed through Combined Analysis of Chromosomes and DNA Barcodes: The Polyommatus ripartii Species Complex in Armenia and NW Iran. INSECTS 2024; 15:545. [PMID: 39057277 PMCID: PMC11277131 DOI: 10.3390/insects15070545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The detection of cryptic species in complexes that have undergone recent speciation is often difficult, since many standard nuclear markers have not yet accumulated differences between closely related taxa, and differences in mitochondrial markers can be leveled out due to mitochondrial introgressions. In these cases, the use of derived chromosomal characters such as non-ancestral chromosomal numbers and/or unusual karyotype features may be a solution to the species delimitation problem. However, non-ancestral but similar karyotypes may arise secondarily as a result of homoplastic evolution, and their interpretation as homologies may lead to incorrect taxonomic conclusions. In our study, we show that the combined use of mitochondrial DNA barcodes and karyotypes helps to solve this problem and identifies cryptic species in situations where each of these markers does not work individually. Using this approach, we show that the fauna of Armenia and adjacent Iran includes the following cryptic taxa of the Polyommatus ripartii species complex (haploid chromosome number, n in parentheses): P. ripartii paralcestis (n = 90), P. ripartii kalashiani, subsp. nov (n close to 90), P. emmeli, sp. nov. (n = 77-79), P. keleybaricus, sp. nov. (n = 86), P. demavendi belovi (n = 73-75), P. demavendi antonius, subsp. nov. (n = 71-73), P. admetus anatoliensis (n = 79) and P. eriwanensis (n = 29-34). Polyommatus admetus yeranyani is synonymized with P. admetus anatoliensis.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint-Petersburg, Russia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint-Petersburg, Russia
| |
Collapse
|
28
|
Haese-Hill W, Crouch K, Otto TD. Annotation and visualization of parasite, fungi and arthropod genomes with Companion. Nucleic Acids Res 2024; 52:W39-W44. [PMID: 38752499 PMCID: PMC11223846 DOI: 10.1093/nar/gkae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024] Open
Abstract
As sequencing genomes has become increasingly popular, the need for annotation of the resulting assemblies is growing. Structural and functional annotation is still challenging as it includes finding the correct gene sequences, annotating other elements such as RNA and being able to submit those data to databases to share it with the community. Compared to de novo assembly where contiguous chromosomes are a sign of high quality, it is difficult to visualize and assess the quality of annotation. We developed the Companion web server to allow non-experts to annotate their genome using a reference-based method, enabling them to assess the output before submitting to public databases. In this update paper, we describe how we have included novel methods for gene finding and made the Companion server more efficient for annotation of genomes of up to 1 Gb in size. The reference set was increased to include genomes of interest for human and animal health from the fungi and arthropod kingdoms. We show that Companion outperforms existing comparable tools where closely related references are available.
Collapse
Affiliation(s)
| | - Kathryn Crouch
- School of Infection & Immunity, University of Glasgow, UK
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, UK
- LPHI, CNRS, INSERM, Université de Montpellier, France
| |
Collapse
|
29
|
Huang YH, Sun YF, Li H, Li HS, Pang H. PhyloAln: A Convenient Reference-Based Tool to Align Sequences and High-Throughput Reads for Phylogeny and Evolution in the Omic Era. Mol Biol Evol 2024; 41:msae150. [PMID: 39041199 PMCID: PMC11287380 DOI: 10.1093/molbev/msae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The current trend in phylogenetic and evolutionary analyses predominantly relies on omic data. However, prior to core analyses, traditional methods typically involve intricate and time-consuming procedures, including assembly from high-throughput reads, decontamination, gene prediction, homology search, orthology assignment, multiple sequence alignment, and matrix trimming. Such processes significantly impede the efficiency of research when dealing with extensive data sets. In this study, we develop PhyloAln, a convenient reference-based tool capable of directly aligning high-throughput reads or complete sequences with existing alignments as a reference for phylogenetic and evolutionary analyses. Through testing with simulated data sets of species spanning the tree of life, PhyloAln demonstrates consistently robust performance compared with other reference-based tools across different data types, sequencing technologies, coverages, and species, with percent completeness and identity at least 50 percentage points higher in the alignments. Additionally, we validate the efficacy of PhyloAln in removing a minimum of 90% foreign and 70% cross-contamination issues, which are prevalent in sequencing data but often overlooked by other tools. Moreover, we showcase the broad applicability of PhyloAln by generating alignments (completeness mostly larger than 80%, identity larger than 90%) and reconstructing robust phylogenies using real data sets of transcriptomes of ladybird beetles, plastid genes of peppers, or ultraconserved elements of turtles. With these advantages, PhyloAln is expected to facilitate phylogenetic and evolutionary analyses in the omic era. The tool is accessible at https://github.com/huangyh45/PhyloAln.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
30
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Sierra P, Durbin R. Identification of transposable element families from pangenome polymorphisms. Mob DNA 2024; 15:13. [PMID: 38926873 PMCID: PMC11202377 DOI: 10.1186/s13100-024-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Transposable Elements (TEs) are segments of DNA, typically a few hundred base pairs up to several tens of thousands bases long, that have the ability to generate new copies of themselves in the genome. Most existing methods used to identify TEs in a newly sequenced genome are based on their repetitive character, together with detection based on homology and structural features. As new high quality assemblies become more common, including the availability of multiple independent assemblies from the same species, an alternative strategy for identification of TE families becomes possible in which we focus on the polymorphism at insertion sites caused by TE mobility. RESULTS We develop the idea of using the structural polymorphisms found in pangenomes to create a library of the TE families recently active in a species, or in a closely related group of species. We present a tool, pantera, that achieves this task, and illustrate its use both on species with well-curated libraries, and on new assemblies. CONCLUSIONS Our results show that pantera is sensitive and accurate, tending to correctly identify complete elements with precise boundaries, and is particularly well suited to detect larger, low copy number TEs that are often undetected with existing de novo methods.
Collapse
Affiliation(s)
- Pío Sierra
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
32
|
Twyford AD, Beasley J, Barnes I, Allen H, Azzopardi F, Bell D, Blaxter ML, Broad G, Campos-Dominguez L, Choonea D, Crowley L, Cuber P, Cunliffe M, Dombrowski A, Douglas B, Forrest LL, Gaya E, Greeves C, Griffin C, Harley J, Hart ML, Holland PW, Hollingsworth PM, Januszczak I, Jones A, Kersey P, Kilias E, Lawniczak MK, Lewis OT, Mian S, Minotto A, Misra R, Mulhair PO, Pereira da Conceicoa L, Price BW, Salatino S, Shaw F, Sivell O, Sivess L, Uhl R, Woof K. A DNA barcoding framework for taxonomic verification in the Darwin Tree of Life Project. Wellcome Open Res 2024; 9:339. [PMID: 39386966 PMCID: PMC11462125 DOI: 10.12688/wellcomeopenres.21143.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity genomics research requires reliable organismal identification, which can be difficult based on morphology alone. DNA-based identification using DNA barcoding can provide confirmation of species identity and resolve taxonomic issues but is rarely used in studies generating reference genomes. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We present a standardised framework for DNA barcode sequencing and data interpretation that is then adapted for diverse organismal groups. DNA barcoding data from over 12,000 DToL specimens has identified up to 20% of samples requiring additional verification, with 2% of seed plants and 3.5% of animal specimens subsequently having their names changed. We also make recommendations for future developments using new sequencing approaches and streamlined bioinformatic approaches.
Collapse
Affiliation(s)
- Alex D. Twyford
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, Scotland, EH9 3FL, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
| | | | - Ian Barnes
- Natural History Museum, London, England, SW7 5BD, UK
| | - Heather Allen
- Natural History Museum, London, England, SW7 5BD, UK
| | - Freja Azzopardi
- The Marine Biological Association, Plymouth, England, PL1 2PB, UK
| | - David Bell
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
| | - Mark L. Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Gavin Broad
- Natural History Museum, London, England, SW7 5BD, UK
| | - Lucia Campos-Dominguez
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, Scotland, EH9 3FL, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
- Centre for Research in Agricultural Genomics, Barcelona, Spain
| | | | - Liam Crowley
- Department of Biology, University of Oxford, Oxford, England, OX1 3SZ, UK
| | - Piotr Cuber
- Natural History Museum, London, England, SW7 5BD, UK
| | - Michael Cunliffe
- The Marine Biological Association, Plymouth, England, PL1 2PB, UK
| | | | - Brian Douglas
- Royal Botanic Gardens Kew, Richmond, England, TW9 3AB, UK
| | - Laura L. Forrest
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
| | - Ester Gaya
- Royal Botanic Gardens Kew, Richmond, England, TW9 3AB, UK
| | | | | | - Joanna Harley
- The Marine Biological Association, Plymouth, England, PL1 2PB, UK
| | - Michelle L. Hart
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
| | - Peter W.H. Holland
- Department of Biology, University of Oxford, Oxford, England, OX1 3SZ, UK
| | | | | | - Amanda Jones
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
| | - Paul Kersey
- Royal Botanic Gardens Kew, Richmond, England, TW9 3AB, UK
| | - Estelle Kilias
- Department of Biology, University of Oxford, Oxford, England, OX1 3SZ, UK
| | | | - Owen T. Lewis
- Department of Biology, University of Oxford, Oxford, England, OX1 3SZ, UK
| | - Sahr Mian
- Royal Botanic Gardens Kew, Richmond, England, TW9 3AB, UK
| | | | - Raju Misra
- Natural History Museum, London, England, SW7 5BD, UK
| | - Peter O. Mulhair
- Department of Biology, University of Oxford, Oxford, England, OX1 3SZ, UK
| | | | - Ben W. Price
- Natural History Museum, London, England, SW7 5BD, UK
| | | | | | - Olga Sivell
- Natural History Museum, London, England, SW7 5BD, UK
| | - Laura Sivess
- Natural History Museum, London, England, SW7 5BD, UK
| | - Rebekka Uhl
- The Marine Biological Association, Plymouth, England, PL1 2PB, UK
| | - Kieran Woof
- Royal Botanic Gardens Kew, Richmond, England, TW9 3AB, UK
| | - Darwin Tree of Life Consortium
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, Scotland, EH9 3FL, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, EH3 5LR, UK
- Natural History Museum, London, England, SW7 5BD, UK
- The Marine Biological Association, Plymouth, England, PL1 2PB, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
- Centre for Research in Agricultural Genomics, Barcelona, Spain
- Department of Biology, University of Oxford, Oxford, England, OX1 3SZ, UK
- Royal Botanic Gardens Kew, Richmond, England, TW9 3AB, UK
- Earlham Institute, Norwich, NR4 7UZ, UK
| |
Collapse
|
33
|
Sidharthan VK, Reddy V, Kiran G, Rajeswari V, Baranwal VK, Kumar MK, Kumar KS. Probing of plant transcriptomes reveals the hidden genetic diversity of the family Secoviridae. Arch Virol 2024; 169:150. [PMID: 38898334 DOI: 10.1007/s00705-024-06076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Secoviruses are single-stranded RNA viruses that infect plants. In the present study, we identified 61 putative novel secoviral genomes in various plant species by mining publicly available plant transcriptome data. These viral sequences represent the genomes of 13 monopartite and 48 bipartite secovirids. The genome sequences of 52 secovirids were coding-complete, and nine were partial. Except for small open reading frames (ORFs) determined in waikaviral genomes and RNA2 of torradoviruses, all of the recovered genomes/genome segments contained a large ORF encoding a polyprotein. Based on genome organization and phylogeny, all but three of the novel secoviruses were assigned to different genera. The genome organization of two identified waika-like viruses resembled that of the recently identified waika-like virus Triticum aestivum secovirus. Phylogenetic analysis revealed a pattern of host-virus co-evolution in a few waika- and waika-like viruses and increased phylogenetic diversity of nepoviruses. The study provides a basis for further investigation of the biological properties of these novel secoviruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India.
| | - Vijayprakash Reddy
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - G Kiran
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - V Rajeswari
- School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M Kiran Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - K Sudheer Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| |
Collapse
|
34
|
Jackson DJ, Cerveau N, Posnien N. De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms - a brief guide. Front Zool 2024; 21:17. [PMID: 38902827 PMCID: PMC11188175 DOI: 10.1186/s12983-024-00538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Many questions in biology benefit greatly from the use of a variety of model systems. High-throughput sequencing methods have been a triumph in the democratization of diverse model systems. They allow for the economical sequencing of an entire genome or transcriptome of interest, and with technical variations can even provide insight into genome organization and the expression and regulation of genes. The analysis and biological interpretation of such large datasets can present significant challenges that depend on the 'scientific status' of the model system. While high-quality genome and transcriptome references are readily available for well-established model systems, the establishment of such references for an emerging model system often requires extensive resources such as finances, expertise and computation capabilities. The de novo assembly of a transcriptome represents an excellent entry point for genetic and molecular studies in emerging model systems as it can efficiently assess gene content while also serving as a reference for differential gene expression studies. However, the process of de novo transcriptome assembly is non-trivial, and as a rule must be empirically optimized for every dataset. For the researcher working with an emerging model system, and with little to no experience with assembling and quantifying short-read data from the Illumina platform, these processes can be daunting. In this guide we outline the major challenges faced when establishing a reference transcriptome de novo and we provide advice on how to approach such an endeavor. We describe the major experimental and bioinformatic steps, provide some broad recommendations and cautions for the newcomer to de novo transcriptome assembly and differential gene expression analyses. Moreover, we provide an initial selection of tools that can assist in the journey from raw short-read data to assembled transcriptome and lists of differentially expressed genes.
Collapse
Affiliation(s)
- Daniel J Jackson
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany.
| | - Nicolas Cerveau
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany
| | - Nico Posnien
- University of Göttingen, Department of Developmental Biology, GZMB, Justus-Von-Liebig-Weg 11, Göttingen, 37077, Germany.
| |
Collapse
|
35
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024:elae026. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
36
|
Shaw F, Minotto A, McTaggart S, Providence A, Harrison P, Paupério J, Rajan J, Burgin J, Cochrane G, Kilias E, Lawniczak MK, Davey R. COPO - Managing sample metadata for biodiversity: considerations from the Darwin Tree of Life project. Wellcome Open Res 2024; 7:279. [PMID: 39091415 PMCID: PMC11292180 DOI: 10.12688/wellcomeopenres.18499.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
Large-scale reference genome sequencing projects for all of biodiversity are underway and common standards have been in place for some years to enable the understanding and sharing of sequence data. However, the metadata that describes the collection, processing and management of samples, and link to the associated sequencing and genome data, are not yet adequately developed and standardised for these projects. At the time of writing, the Darwin Tree of Life (DToL) Project is over two years into its ten-year ambition to sequence all described eukaryotic species in Britain and Ireland. We have sought consensus from a wide range of scientists across taxonomic domains to determine the minimal set of metadata that we collectively deem as critically important to accompany each sequenced specimen. These metadata are made available throughout the subsequent laboratory processes, and once collected, need to be adequately managed to fulfil the requirements of good data management practice. Due to the size and scale of management required, software tools are needed. These tools need to implement rigorous development pathways and change management procedures to ensure that effective research data management of key project and sample metadata is maintained. Tracking of sample properties through the sequencing process is handled by Lab Information Management Systems (LIMS), so publication of the sequenced data is achieved via technical integration of LIMS and data management tools. Discussions with community members on how metadata standards need to be managed within large-scale programmes is a priority in the planning process. Here we report on the standards we developed with respect to a robust and reusable mechanism of metadata collection, in the hopes that other projects forthcoming or underway will adopt these practices for metadata.
Collapse
Affiliation(s)
- Felix Shaw
- Earlham Institute, Norwich, Norfolk, NR4 7UH, UK
| | | | | | | | - Peter Harrison
- EMBL European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Joana Paupério
- EMBL European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Jeena Rajan
- EMBL European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Josephine Burgin
- EMBL European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Guy Cochrane
- EMBL European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Estelle Kilias
- Department of Zoology, University of Oxford, Oxford, Oxfordshire, OX1 2JD, UK
| | | | - Robert Davey
- Earlham Institute, Norwich, Norfolk, NR4 7UH, UK
| |
Collapse
|
37
|
Caporale LH. Evolutionary feedback from the environment shapes mechanisms that generate genome variation. J Physiol 2024; 602:2601-2614. [PMID: 38194279 DOI: 10.1113/jp284411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.
Collapse
|
38
|
Price DRG, Steele P, Frew D, McLean K, Androscuk D, Geldhof P, Borloo J, Albaladejo JP, Nisbet AJ, McNeilly TN. Characterisation of protective vaccine antigens from the thiol-containing components of excretory/secretory material of Ostertagia ostertagi. Vet Parasitol 2024; 328:110154. [PMID: 38490160 DOI: 10.1016/j.vetpar.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Previous vaccination trials have demonstrated that thiol proteins affinity purified from Ostertagia ostertagi excretory-secretory products (O. ostertagi ES-thiol) are protective against homologous challenge. Here we have shown that protection induced by this vaccine was consistent across four independent vaccine-challenge experiments. Protection is associated with reduced cumulative faecal egg counts across the duration of the trials, relative to control animals. To better understand the diversity of antigens in O. ostertagi ES-thiol we used high-resolution shotgun proteomics to identify 490 unique proteins in the vaccine preparation. The most numerous ES-thiol proteins, with 91 proteins identified, belong to the sperm-coating protein/Tpx/antigen 5/pathogenesis-related protein 1 (SCP/TAPS) family. This family includes previously identified O. ostertagi vaccine antigens O. ostertagi ASP-1 and ASP-2. The ES-thiol fraction also has numerous proteinases, representing three distinct classes, including: metallo-; aspartyl- and cysteine proteinases. In terms of number of family members, the M12 astacin-like metalloproteinases, with 33 proteins, are the most abundant proteinase family in O. ostertagi ES-thiol. The O. ostertagi ES-thiol proteome provides a comprehensive database of proteins present in this vaccine preparation and will guide future vaccine antigen discovery projects.
Collapse
Affiliation(s)
- Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK.
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Dorota Androscuk
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Javier Palarea Albaladejo
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, Scotland, UK; Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| |
Collapse
|
39
|
Yu H, Li Y, Han W, Bao L, Liu F, Ma Y, Pu Z, Zeng Q, Zhang L, Bao Z, Wang S. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nat Protoc 2024; 19:1623-1678. [PMID: 38514839 DOI: 10.1038/s41596-024-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/20/2023] [Indexed: 03/23/2024]
Abstract
The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.
Collapse
Affiliation(s)
- Hongwei Yu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuanting Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Laboratory for Marine Fisheries and Aquaculture, Laoshan Laboratory, Qingdao, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
40
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
41
|
Pastusiak A, Reddy MR, Chen X, Hoyer I, Dorman J, Gebhardt ME, Carpi G, Norris DE, Pipas JM, Jackson EK. A metagenomic analysis of the phase 2 Anopheles gambiae 1000 genomes dataset reveals a wide diversity of cobionts associated with field collected mosquitoes. Commun Biol 2024; 7:667. [PMID: 38816486 PMCID: PMC11139907 DOI: 10.1038/s42003-024-06337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
The Anopheles gambiae 1000 Genomes (Ag1000G) Consortium previously utilized deep sequencing methods to catalogue genetic diversity across African An. gambiae populations. We analyzed the complete datasets of 1142 individually sequenced mosquitoes through Microsoft Premonition's Bayesian mixture model based (BMM) metagenomics pipeline. All specimens were confirmed as either An. gambiae sensu stricto (s.s.) or An. coluzzii with a high degree of confidence ( > 98% identity to reference). Homo sapiens DNA was identified in all specimens indicating contamination may have occurred either at the time of specimen collection, preparation and/or sequencing. We found evidence of vertebrate hosts in 162 specimens. 59 specimens contained validated Plasmodium falciparum reads. Human hepatitis B and primate erythroparvovirus-1 viral sequences were identified in fifteen and three mosquito specimens, respectively. 478 of the 1,142 specimens were found to contain bacterial reads and bacteriophage-related contigs were detected in 27 specimens. This analysis demonstrates the capacity of metagenomic approaches to elucidate important vector-host-pathogen interactions of epidemiological significance.
Collapse
Affiliation(s)
| | - Michael R Reddy
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA.
| | - Xiaoji Chen
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA
| | - Isaiah Hoyer
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Mary E Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ethan K Jackson
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA
| |
Collapse
|
42
|
Wos G, Palomar G, Golab MJ, Marszałek M, Sniegula S. Effects of overwintering on the transcriptome and fitness traits in a damselfly with variable voltinism across two latitudes. Sci Rep 2024; 14:12192. [PMID: 38806592 PMCID: PMC11133422 DOI: 10.1038/s41598-024-63066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
43
|
Khalaf A, Francis O, Blaxter ML. Genome evolution in intracellular parasites: Microsporidia and Apicomplexa. J Eukaryot Microbiol 2024:e13033. [PMID: 38785208 DOI: 10.1111/jeu.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Microsporidia and Apicomplexa are eukaryotic, single-celled, intracellular parasites with huge public health and economic importance. Typically, these parasites are studied separately, emphasizing their uniqueness and diversity. In this review, we explore the huge amount of genomic data that has recently become available for the two groups. We compare and contrast their genome evolution and discuss how their transitions to intracellular life may have shaped it. In particular, we explore genome reduction and compaction, genome expansion and ploidy, gene shuffling and rearrangements, and the evolution of centromeres and telomeres.
Collapse
Affiliation(s)
- Amjad Khalaf
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Ore Francis
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | |
Collapse
|
44
|
Schultz DT, Heath-Heckman EA, Winchell CJ, Kuo DH, Yu YS, Oberauer F, Kocot KM, Cho SJ, Simakov O, Weisblat DA. Acceleration of genome rearrangement in clitellate annelids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593736. [PMID: 38798472 PMCID: PMC11118384 DOI: 10.1101/2024.05.12.593736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Comparisons of multiple metazoan genomes have revealed the existence of ancestral linkage groups (ALGs), genomic scaffolds sharing sets of orthologous genes that have been inherited from ancestral animals for hundreds of millions of years (Simakov et al. 2022; Schultz et al. 2023) These ALGs have persisted across major animal taxa including Cnidaria, Deuterostomia, Ecdysozoa and Spiralia. Notwithstanding this general trend of chromosome-scale conservation, ALGs have been obliterated by extensive genome rearrangements in certain groups, most notably including Clitellata (oligochaetes and leeches), a group of easily overlooked invertebrates that is of tremendous ecological, agricultural and economic importance (Charles 2019; Barrett 2016). To further investigate these rearrangements, we have undertaken a comparison of 12 clitellate genomes (including four newly sequenced species) and 11 outgroup representatives. We show that these rearrangements began at the base of the Clitellata (rather than progressing gradually throughout polychaete annelids), that the inter-chromosomal rearrangements continue in several clitellate lineages and that these events have substantially shaped the evolution of the otherwise highly conserved Hox cluster.
Collapse
Affiliation(s)
- Darrin T. Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Elizabeth A.C. Heath-Heckman
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Christopher J. Winchell
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA 94720-3200, USA
| | - Dian-Han Kuo
- Department of Life Science & Museum of Zoology, National Taiwan University, No. 1 Section 4 Roosevelt Rd., Taipei 10617, Taiwan
| | - Yun-sang Yu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Fabian Oberauer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Kevin M. Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - David A. Weisblat
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA 94720-3200, USA
| |
Collapse
|
45
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
46
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
47
|
Wong Y, Ignatieva A, Koskela J, Gorjanc G, Wohns AW, Kelleher J. A general and efficient representation of ancestral recombination graphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565466. [PMID: 37961279 PMCID: PMC10635123 DOI: 10.1101/2023.11.03.565466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a result of recombination, adjacent nucleotides can have different paths of genetic inheritance and therefore the genealogical trees for a sample of DNA sequences vary along the genome. The structure capturing the details of these intricately interwoven paths of inheritance is referred to as an ancestral recombination graph (ARG). Classical formalisms have focused on mapping coalescence and recombination events to the nodes in an ARG. This approach is out of step with modern developments, which do not represent genetic inheritance in terms of these events or explicitly infer them. We present a simple formalism that defines an ARG in terms of specific genomes and their intervals of genetic inheritance, and show how it generalises these classical treatments and encompasses the outputs of recent methods. We discuss nuances arising from this more general structure, and argue that it forms an appropriate basis for a software standard in this rapidly growing field.
Collapse
Affiliation(s)
- Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| | - Anastasia Ignatieva
- School of Mathematics and Statistics, University of Glasgow, UK
- Department of Statistics, University of Oxford, UK
| | - Jere Koskela
- School of Mathematics, Statistics and Physics, Newcastle University, UK
- Department of Statistics, University of Warwick, UK
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Anthony W. Wohns
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| |
Collapse
|
48
|
Lindeboom TA, Sanchez Olmos MDC, Schulz K, Brinkmann CK, Ramírez Rojas AA, Hochrein L, Schindler D. An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts. ACS Synth Biol 2024; 13:1116-1127. [PMID: 38597458 PMCID: PMC11036488 DOI: 10.1021/acssynbio.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
Collapse
Affiliation(s)
- Timon A Lindeboom
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | | | - Karina Schulz
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Cedric K Brinkmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Adán A Ramírez Rojas
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Lena Hochrein
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35032Marburg, Germany
| |
Collapse
|
49
|
Bernal-Gallardo JJ, de Folter S. Plant genome information facilitates plant functional genomics. PLANTA 2024; 259:117. [PMID: 38592421 PMCID: PMC11004055 DOI: 10.1007/s00425-024-04397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico.
| |
Collapse
|
50
|
Comparative genomics uncover the evolutionary history of butterfly and moth chromosomes. Nat Ecol Evol 2024; 8:612-613. [PMID: 38383854 DOI: 10.1038/s41559-024-02341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
|