1
|
Zhang X, Xu T, Shi R, Han B, Liu F, Liu Z, Gao X, Du J, Wang Y, Gao P. Atomic-Scale Mechanism of Enhanced Electron-Phonon Coupling at the Interface of MgB 2 Thin Films. NANO LETTERS 2024; 24:13200-13205. [PMID: 39378194 DOI: 10.1021/acs.nanolett.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In conventional Bardeen-Cooper-Schrieffer (BCS) superconductors, electron-phonon coupling is the fundamental mechanism of superconductivity. For instance, the superconductivity of magnesium diboride (MgB2) comes from the coupling between E2g modes (in-plane boron-boron bond vibrations) and self-doped charge carriers. In thin films and ceramics of BCS superconductors, interfaces with discontinuous chemical bonds may alter the local electron-phonon coupling. However, such effects remain largely unexplored. Here, we investigate the heterointerface of the MgB2 film on the SiC substrate at the atomic scale using electron microscopy and spectroscopy. We detect the presence of a thin MgO layer with a thickness of ∼1 nm between MgB2 and SiC. Atomic-level electron energy loss spectra (EELS) show MgB2-E2g mode splitting and softening near the MgB2/MgO interface, which enhances electron-phonon coupling at the interface. Our findings highlight the potential of interface engineering to enhance superconductivity via modulating local phonon states and/or electron states.
Collapse
Affiliation(s)
- Xiaowen Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Tiequan Xu
- Applied Superconductivity Center and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Ruochen Shi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Bo Han
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Fachen Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Zhetong Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyue Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Yue Wang
- Applied Superconductivity Center and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
2
|
Jiang H, Wang T, Zhang Z, Liu F, Shi R, Sheng B, Sheng S, Ge W, Wang P, Shen B, Sun B, Gao P, Lindsay L, Wang X. Atomic-scale visualization of defect-induced localized vibrations in GaN. Nat Commun 2024; 15:9052. [PMID: 39426978 PMCID: PMC11490645 DOI: 10.1038/s41467-024-53394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Phonon engineering is crucial for thermal management in GaN-based power devices, where phonon-defect interactions limit performance. However, detecting nanoscale phonon transport constrained by III-nitride defects is challenging due to limited spatial resolution. Here, we used advanced scanning transmission electron microscopy and electron energy loss spectroscopy to examine vibrational modes in a prismatic stacking fault in GaN. By comparing experimental results with ab initio calculations, we identified three types of defect-derived modes: localized defect modes, a confined bulk mode, and a fully extended mode. Additionally, the PSF exhibits a smaller phonon energy gap and lower acoustic sound speeds than defect-free GaN, suggesting reduced thermal conductivity. Our study elucidates the vibrational behavior of a GaN defect via advanced characterization methods and highlights properties that may affect thermal behavior.
Collapse
Affiliation(s)
- Hailing Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Tao Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China.
| | - Zhenyu Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Fang Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Ruochen Shi
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Bowen Sheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Shanshan Sheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Weikun Ge
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Ping Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Bo Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Bo Sun
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Peng Gao
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Lucas Lindsay
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Bugnet M, Löffler S, Ederer M, Kepaptsoglou DM, Ramasse QM. Current opinion on the prospect of mapping electronic orbitals in the transmission electron microscope: State of the art, challenges and perspectives. J Microsc 2024; 295:217-235. [PMID: 38818951 DOI: 10.1111/jmi.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
The concept of electronic orbitals has enabled the understanding of a wide range of physical and chemical properties of solids through the definition of, for example, chemical bonding between atoms. In the transmission electron microscope, which is one of the most used and powerful analytical tools for high-spatial-resolution analysis of solids, the accessible quantity is the local distribution of electronic states. However, the interpretation of electronic state maps at atomic resolution in terms of electronic orbitals is far from obvious, not always possible, and often remains a major hurdle preventing a better understanding of the properties of the system of interest. In this review, the current state of the art of the experimental aspects for electronic state mapping and its interpretation as electronic orbitals is presented, considering approaches that rely on elastic and inelastic scattering, in real and reciprocal spaces. This work goes beyond resolving spectral variations between adjacent atomic columns, as it aims at providing deeper information about, for example, the spatial or momentum distributions of the states involved. The advantages and disadvantages of existing experimental approaches are discussed, while the challenges to overcome and future perspectives are explored in an effort to establish the current state of knowledge in this field. The aims of this review are also to foster the interest of the scientific community and to trigger a global effort to further enhance the current analytical capabilities of transmission electron microscopy for chemical bonding and electronic structure analysis.
Collapse
Affiliation(s)
- M Bugnet
- CNRS, INSA Lyon, Université Claude Bernard Lyon 1, MATEIS, UMR 5510, Villeurbanne, France
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, UK
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - S Löffler
- University Service Centre for Transmission Electron Microscopy, TU Wien, Wien, Austria
| | - M Ederer
- University Service Centre for Transmission Electron Microscopy, TU Wien, Wien, Austria
| | - D M Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, UK
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Q M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, UK
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Tsurusawa H, Uzuhashi J, Kozuka Y, Kimoto K, Ohkubo T. Robust Preparation of Sub-20-nm-Thin Lamellae for Aberration-Corrected Electron Microscopy. SMALL METHODS 2024; 8:e2301425. [PMID: 38389181 DOI: 10.1002/smtd.202301425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Aberration-corrected scanning transmission electron microscopy (STEM) has been advancing resolution, sensitivity, and microanalysis due to the intense demands of atomic-level microstructural investigations. Recent STEM technologies require preparing a thin lamella whose thickness is ideally below 20 nm. Although focused-ion-beam/scanning-electron-microscopy (FIB/SEM) is an established method to prepare a high-quality lamella, nanometer-level controllability of lamella thickness remains a fundamental problem. Here, the robust preparation of a sub-20-nm-thin lamella is demonstrated by FIB/SEM with real-time feedback from thickness quantification. The lamella thickness is quantified by back-scattered-electron SEM imaging in a thickness range between 0 and 100 nm without any reference to numerical simulation. Using real-time feedback from the thickness quantification, the FIB/SEM terminates thinning a lamella at a targeted thickness. The real-time feedback system eventually provides 1-nm-level controllability of the lamella thickness. As a proof-of-concept, a near-10-nm-thin lamella is prepared from a SrTiO3 crystal by our methodology. Moreover, the lamella thickness is controllable at a target heterointerface. Thus, a sub-20-nm-thin lamella is prepared from a LaAlO3/SrTiO3 heterointerface. The methodology offers a robust and operator-independent platform to prepare a sub-20-nm-thin lamella from various materials. This platform will broadly impact aberration-corrected STEM studies in materials science and the semiconductor industry.
Collapse
Affiliation(s)
- Hideyo Tsurusawa
- LQUOM Inc., 79-5, Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan
| | - Jun Uzuhashi
- National Institute for Materials Science (NIMS), Research Center for Magnetic and Spintronic Materials, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Yusuke Kozuka
- National Institute for Materials Science (NIMS), Research Center for Materials Nanoarchitectonics (MANA), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Kimoto
- National Institute for Materials Science (NIMS), Center for Basic Research on Materials, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Tadakatsu Ohkubo
- National Institute for Materials Science (NIMS), Research Center for Magnetic and Spintronic Materials, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
5
|
Li A, Zeiger PM, He Z, Xu M, Pennycook SJ, Rusz J, Zhou W. Systematic Absences of Optical Phonon Modes in Phonon Dispersion Measured by Electron Microscopy. PHYSICAL REVIEW LETTERS 2024; 133:046101. [PMID: 39121401 DOI: 10.1103/physrevlett.133.046101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/10/2024] [Indexed: 08/11/2024]
Abstract
Phonon dispersion relations are widely used to elucidate the vibrational properties of materials. As an emerging technique, momentum-resolved vibrational spectroscopy in scanning transmission electron microscopy offers an unparalleled approach to explore q-dependent phonon behavior at local structures. In this study, we systematically investigate the phonon dispersion of monolayer graphene across several Brillouin zones (BZs) using momentum-resolved vibrational spectroscopy and find that the optical phonon signals vanish at the Γ points with indices (hk0) satisfying h+2k=3n (n denoted integers). Theoretical analysis reveals that the observed phenomena arise from the complete destructive interference of the scattered waves from different basis atoms. This observation, corroborated by the study of diamond, should be a general characteristic of materials composed of symmetrically equivalent pairs of the same elements. Moreover, our results emphasize the importance of multiple scattering in interpreting the vibrational signals in bulk materials. We demonstrate that the systematic absences and dynamic effects, which have not been much appreciated before, offer new insights into the experimental assessment of local vibrational properties of materials.
Collapse
|
6
|
Shan S, Zhang Z, Volz S, Chen J. Phonon mode at interface and its impact on interfacial thermal transport. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:423001. [PMID: 38968932 DOI: 10.1088/1361-648x/ad5fd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Due to the minimization and integration of micro/nano-devices, the high density of interfaces becomes a significant challenge in various applications. Phonon modes at interface resulting from the mismatch between inhomogeneous functional counterparts are crucial for interfacial thermal transport and overall thermal management of micro/nano-devices, making it a topic of great research interest recently. Here, we comprehensively review the recent advances on the theoretical and experimental investigations of interfacial phonon mode and its impact on interfacial thermal transport. Firstly, we summarize the recent progresses of the theoretical and experimental characterization of interfacial phonon modes at various interfaces, along with the overview of the development of diverse methodologies. Then, the impact of interfacial phonon modes on interfacial thermal transport process are discussed from the normal modal decomposition and inelastic scattering mechanisms. Meanwhile, we examine various factors influencing the interfacial phonon modes and interfacial thermal transport, including temperature, interface roughness, interfacial mass gradient, interfacial disorder, and so on. Finally, an outlook is provided for future studies. This review provides a fundamental understanding of interfacial phonon modes and their impact on interfacial thermal transport, which would be beneficial for the exploration and optimization of thermal management in various micro/nano-devices with high density interfaces.
Collapse
Affiliation(s)
- Shuyue Shan
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhongwei Zhang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Sebastian Volz
- Laboratory for Integrated Micro and Mechatronic Systems, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Jie Chen
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
7
|
Shi R, Li Q, Xu X, Han B, Zhu R, Liu F, Qi R, Zhang X, Du J, Chen J, Yu D, Zhu X, Guo J, Gao P. Atomic-scale observation of localized phonons at FeSe/SrTiO 3 interface. Nat Commun 2024; 15:3418. [PMID: 38653990 DOI: 10.1038/s41467-024-47688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.
Collapse
Affiliation(s)
- Ruochen Shi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Qize Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Xiaofeng Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Han
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Ruixue Zhu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Fachen Liu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ruishi Qi
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Xiaowen Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Ji Chen
- Institute of Condensed Matter and Material Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Dapeng Yu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen, 518055, China
- Hefei National Laboratory, 230088, Hefei, China
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China.
- Hefei National Laboratory, 230088, Hefei, China.
| |
Collapse
|
8
|
Wang Q, Zhang J, Xiong Y, Li S, Chernysh V, Liu X. Phonon dynamic behaviors induced by amorphous layers at heterointerfaces. Phys Chem Chem Phys 2024; 26:8397-8407. [PMID: 38407410 DOI: 10.1039/d3cp04480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
An amorphous layer is commonly found at the interfaces of heterostructures due to lattice and thermal mismatch between dissimilar materials. While existing research has explored the impact of these layers on interfacial thermal transport, a comprehensive understanding of the underlying microscopic mechanisms remains essential for advancing thermal nanodevice development. Through phonon wave packet simulations, we investigated the dynamic behaviors of phonons crossing the amorphous interlayer at the GaN/AlN interface from the mode level. Our results highlight the amorphous layer's capability to notably adjust the polarization properties of incoming phonons, culminating in phonon localization. By examining transmission outcomes on a per-mode basis, we demonstrate the amorphous layer's impediment on phonon transport. Notably, this resistance escalates with an increase in the amorphous layer thickness (L), with certain high-frequency TA phonons showing unexpectedly high transmissivity due to polarization conversion and inelastic scattering at the amorphous interface. In addition, we observe that the amorphous layer prompts multiple reflections of incident phonons, instigating discernible from the two-beam interference equation. Finally, in pursuit of enhanced phonon transport, we employ annealing techniques to optimize the interface morphology, leading to the recrystallization of the amorphous layer. This optimization yields a substantial enhancement of interfacial thermal conductance by up to 38% for L = 3 nm.
Collapse
Affiliation(s)
- Quanjie Wang
- Institute of Micro/Nano Electromechanical System and Integrated Circuit, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Jie Zhang
- Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
| | - Yucheng Xiong
- Institute of Micro/Nano Electromechanical System and Integrated Circuit, College of Mechanical Engineering, Donghua University, Shanghai, China
| | - Shouhang Li
- Institute of Micro/Nano Electromechanical System and Integrated Circuit, College of Mechanical Engineering, Donghua University, Shanghai, China
| | - Vladimir Chernysh
- Department of Physical Electronics, Lomonosov Moscow State University, Moskva, Russia
| | - Xiangjun Liu
- Institute of Micro/Nano Electromechanical System and Integrated Circuit, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Xu M, Bao DL, Li A, Gao M, Meng D, Li A, Du S, Su G, Pennycook SJ, Pantelides ST, Zhou W. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. NATURE MATERIALS 2023; 22:612-618. [PMID: 36928385 DOI: 10.1038/s41563-023-01500-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/06/2023] [Indexed: 05/05/2023]
Abstract
Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.
Collapse
Affiliation(s)
- Mingquan Xu
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - De-Liang Bao
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Aowen Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Meng Gao
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongqian Meng
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ang Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shixuan Du
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
- Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Gang Su
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Stephen J Pennycook
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sokrates T Pantelides
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
10
|
Li N, Shi R, Li Y, Qi R, Liu F, Zhang X, Liu Z, Li Y, Guo X, Liu K, Jiang Y, Li XZ, Chen J, Liu L, Wang EG, Gao P. Phonon transition across an isotopic interface. Nat Commun 2023; 14:2382. [PMID: 37185918 PMCID: PMC10130007 DOI: 10.1038/s41467-023-38053-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-10BN/h-11BN isotope heterostructure with sub-unit-cell resolution. We find the phonons' energy changes gradually across the interface, featuring a wide transition regime. Phonons near the Brillouin zone center have a transition regime of ~3.34 nm, whereas phonons at the Brillouin zone boundary have a transition regime of ~1.66 nm. We propose that the isotope-induced charge effect at the interface accounts for the distinct delocalization behavior. Moreover, the variation of phonon energy between atom layers near the interface depends on both of momentum transfer and mass change. This study provides new insights into the isotopic effects in natural materials.
Collapse
Grants
- the National Natural Science Foundation of China (52125307, 11974023, 52021006,T2188101), and the “2011 Program” from the Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter.
- the National Natural Science Foundation of China (52025023), Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002) to K.L.
- National Key R&D Program of China (2021YFA1400500), the National Natural Science Foundation of China (11974024, 92165101),the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB33000000
- National Key R&D Program of China (2021YFA1400500), the National Natural Science Foundation of China (U1932153, 11974001)
Collapse
Affiliation(s)
- Ning Li
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Ruochen Shi
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
| | - Yifei Li
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Ruishi Qi
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Fachen Liu
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Xiaowen Zhang
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
| | - Zhetong Liu
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Yuehui Li
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Kaihui Liu
- Institute of Condensed Matter and Material Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
- Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China
| | - Xin-Zheng Li
- Institute of Condensed Matter and Material Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, 100871, Beijing, China
| | - Ji Chen
- Institute of Condensed Matter and Material Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
- Songshan Lake Materials Laboratory, 523808, Dongguan, China.
- School of Physics, Shanghai University, 200444, Shanghai, China.
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China.
- Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
- Hefei National Laboratory, 230088, Hefei, China.
| |
Collapse
|
11
|
Yang H, Konečná A, Xu X, Cheong SW, Batson PE, García de Abajo FJ, Garfunkel E. Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS. ACS NANO 2022; 16:18795-18805. [PMID: 36317944 DOI: 10.1021/acsnano.2c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doping inhomogeneities in solids are not uncommon, but their microscopic observation and understanding are limited due to the lack of bulk-sensitive experimental techniques with high enough spatial and spectral resolution. Here, we demonstrate nanoscale imaging of both dopants and free charge carriers in La-doped BaSnO3 (BLSO) using high-resolution electron energy-loss spectroscopy (EELS). By analyzing high- and low-energy excitations in EELS, we reveal chemical and electronic inhomogeneities within a single BLSO nanocrystal. The inhomogeneous doping leads to distinctive localized infrared surface plasmons, including a previously unobserved plasmon mode that is highly confined between high- and low-doping regions. We further quantify the carrier density, effective mass, and dopant activation percentage by EELS and transport measurements on the bulk single crystals of BLSO. These results not only represent a practical approach for studying heterogeneities in solids and understanding structure-property relationships at the nanoscale, but also demonstrate the possibility of infrared plasmon tuning by leveraging nanoscale doping texture.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| | - Andrea Konečná
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- Central European Institute of Technology, Brno University of Technology, 61200Brno, Czech Republic
| | - Xianghan Xu
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - Philip E Batson
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010Barcelona, Spain
| | - Eric Garfunkel
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| |
Collapse
|
12
|
Yan X, Jin Q, Jiang Y, Yao T, Li X, Tao A, Gao C, Chen C, Ma X, Ye H. Direct Determination of Band Gap of Defects in a Wide Band Gap Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36875-36881. [PMID: 35926161 DOI: 10.1021/acsami.2c10143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Crystal defects play an important role in the degradation and failure of semiconductor materials and devices. Direct determination of band gap of defects is a critical step for clarifying how the defects affect the physical properties of semiconductors. Here, high-quality aluminum nitride (AlN) thin films were grown epitaxially on single-crystal Al2O3 substrates via pulsed laser deposition. The atomic structure and band gap of three types of inversion domain boundaries (IDBs) in AlN were determined using aberration-corrected transmission electron microscopy and atomic-resolution valence electron energy-loss spectroscopy. It was found that the band gap of all of the IDBs reduces evidently compared to that of the bulk AlN. The maximum band gap reduction of the IDBs is 1.0 eV. First-principles calculations revealed that the band gap reduction of the IDBs is mainly due to the rise of pz orbital at the valence band maximum, which originates from the elongated Al-N bonds along the [0001] direction at the IDBs. The successful band gap determination of defects paves an avenue for quantitatively evaluating the effect of defects on the performance of semiconductor materials and devices.
Collapse
Affiliation(s)
- Xuexi Yan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Qianqian Jin
- School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yixiao Jiang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Tingting Yao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Xiang Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Ang Tao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Chunyang Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Chunlin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Xiuliang Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- State Key Lab of Advanced Processing and Recycling on Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | | |
Collapse
|
13
|
Khan S, Angeles F, Wright J, Vishwakarma S, Ortiz VH, Guzman E, Kargar F, Balandin AA, Smith DJ, Jena D, Xing HG, Wilson R. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36178-36188. [PMID: 35895030 PMCID: PMC9376929 DOI: 10.1021/acsami.2c01351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The goal of this study is to determine how bulk vibrational properties and interfacial structure affect thermal transport at interfaces in wide band gap semiconductor systems. Time-domain thermoreflectance measurements of thermal conductance G are reported for interfaces between nitride metals and group IV (diamond, SiC, Si, and Ge) and group III-V (AlN, GaN, and cubic BN) materials. Group IV and group III-V semiconductors have systematic differences in vibrational properties. Similarly, HfN and TiN are also vibrationally distinct from each other. Therefore, comparing G of interfaces formed from these materials provides a systematic test of how vibrational similarity between two materials affects interfacial transport. For HfN interfaces, we observe conductances between 140 and 300 MW m-2 K-1, whereas conductances between 200 and 800 MW m-2 K-1 are observed for TiN interfaces. TiN forms exceptionally conductive interfaces with GaN, AlN, and diamond, that is, G > 400 MW m-2 K-1. Surprisingly, interfaces formed between vibrationally similar and dissimilar materials are similarly conductive. Thus, vibrational similarity between two materials is not a necessary requirement for high G. Instead, the time-domain thermoreflectance experiment (TDTR) data, an analysis of bulk vibrational properties, and transmission electron microscopy (TEM) suggest that G depends on two other material properties, namely, the bulk phonon properties of the vibrationally softer of the two materials and the interfacial structure. To determine how G depends on interfacial structure, TDTR and TEM measurements were conducted on a series of TiN/AlN samples prepared in different ways. Interfacial disorder at a TiN/AlN interface adds a thermal resistance equivalent to ∼1 nm of amorphous material. Our findings improve fundamental understanding of what material properties are most important for thermally conductive interfaces. They also provide benchmarks for the thermal conductance of interfaces with wide band gap semiconductors.
Collapse
Affiliation(s)
- Samreen Khan
- University
of California Riverside, Riverside, California 92521, United States
| | - Frank Angeles
- University
of California Riverside, Riverside, California 92521, United States
| | - John Wright
- Cornell
University, Ithaca, New York 14850, United
States
| | | | - Victor H. Ortiz
- University
of California Riverside, Riverside, California 92521, United States
| | - Erick Guzman
- University
of California Riverside, Riverside, California 92521, United States
| | - Fariborz Kargar
- University
of California Riverside, Riverside, California 92521, United States
| | | | - David J. Smith
- Arizona
State University, Tempe, Arizona 85287, United
States
| | - Debdeep Jena
- Cornell
University, Ithaca, New York 14850, United
States
| | - H. Grace Xing
- Cornell
University, Ithaca, New York 14850, United
States
| | - Richard Wilson
- University
of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
14
|
Zhou H, Ong ZY, Zhang G, Zhang YW. Computational predictions of quantum thermal transport across nanoscale interfaces. NANOSCALE 2022; 14:9209-9217. [PMID: 35726755 DOI: 10.1039/d2nr01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfaces are essential elements in nanoscale devices and their properties can differ significantly from their bulk counterparts. Because interfaces often act as bottlenecks in heat dissipation, the prediction and control of the interfacial thermal conductance is critical to the design of nanoscale devices. In this review, we examine the recent advances in quantum interfacial thermal transport from a theoretical and computational perspective. We discuss in detail recent advances in the Atomistic Green's Function method which is an important tool for predicting interfacial thermal transport. We also discuss recent progress in the understanding of interfacial transport mechanisms, including the role of interfacial modes, the role of anharmonic phonon-phonon coupling, the role of electron-phonon interaction, and the ways to tune the interfacial thermal conductance. Finally, we give an overview of the challenges and opportunities in this research field.
Collapse
Affiliation(s)
- Hangbo Zhou
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Zhun-Yong Ong
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|