1
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros CC, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. eLife 2024; 13:RP95402. [PMID: 39422452 PMCID: PMC11488851 DOI: 10.7554/elife.95402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the Caenorhabditis elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells, most notably in gonadal cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel sites of monoaminergic neurotransmitter uptake. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Curtis Loer
- Department of Biology, University of San DiegoSan DiegoUnited States
| | - G Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Daniel M Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Merly C Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
3
|
Wittes J, Greenwald I. New Flexon-based reagents for tissue-specific Auxin-Inducible Degradation and for characterizing Cre and Flp drivers in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001315. [PMID: 39228994 PMCID: PMC11369693 DOI: 10.17912/micropub.biology.001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
A Flexon stop cassette interrupts translation of a coding region until it is excised by a recombinase to allow for gene expression. We have expanded options for Auxin-Inducible Degradation by generating Flexon-based transgenes for tissue-specific expression of the ubiquitin ligase substrate recognition component TIR1 or the variant TIR1(F79G) after excision of the Flexon by Cre recombinase. We also describe Flexon-based tester transgenes to facilitate gathering accurate information about the expression pattern of Cre and Flp recombinase drivers that can be used in conjunction with any conditional expression reagents that utilize these recombinases.
Collapse
Affiliation(s)
- Julia Wittes
- Dept. of Biological Sciences, Columbia University, New York, New York, USA
| | - Iva Greenwald
- Dept. of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros C, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573258. [PMID: 38895397 PMCID: PMC11185579 DOI: 10.1101/2023.12.24.573258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the C. elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel neurons that uptake monoaminergic neurotransmitters. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Curtis Loer
- Department of Biology, University of San Diego, San Diego, California, USA
| | - G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Daniel M. Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Merly C. Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Cyril Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| |
Collapse
|
5
|
Yang Q, Wang J, Chen Z. Conditional splicing system for tight control of viral overlapping genes. J Virol 2024; 98:e0024224. [PMID: 38446633 PMCID: PMC11019872 DOI: 10.1128/jvi.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Viral genomes frequently harbor overlapping genes, complicating the development of virus-vectored vaccines and gene therapies. This study introduces a novel conditional splicing system to precisely control the expression of such overlapping genes through recombinase-mediated conditional splicing. We refined site-specific recombinase (SSR) conditional splicing systems and explored their mechanisms. The systems demonstrated exceptional inducibility (116,700-fold increase) with negligible background expression, facilitating the conditional expression of overlapping genes in adenovirus-associated virus (AAV) and human immunodeficiency virus type 1. Notably, this approach enabled the establishment of stable AAV producer cell lines, encapsulating all necessary packaging genes. Our findings underscore the potential of the SSR-conditional splicing system to significantly advance vector engineering, enhancing the efficacy and scalability of viral-vector-based therapies and vaccines. IMPORTANCE Regulating overlapping genes is vital for gene therapy and vaccine development using viral vectors. The regulation of overlapping genes presents challenges, including cytotoxicity and impacts on vector capacity and genome stability, which restrict stable packaging cell line development and broad application. To address these challenges, we present a "loxp-splice-loxp"-based conditional splicing system, offering a novel solution for conditional expression of overlapping genes and stable cell line establishment. This system may also regulate other cytotoxic genes, representing a significant advancement in cell engineering and gene therapy as well as biomass production.
Collapse
Affiliation(s)
- Qing Yang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jinlin Wang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
6
|
Xiao Y, Yee C, Zhao CZ, Martinez MAQ, Zhang W, Shen K, Matus DQ, Hammell C. An expandable FLP-ON::TIR1 system for precise spatiotemporal protein degradation in Caenorhabditis elegans. Genetics 2023; 223:iyad013. [PMID: 36722258 PMCID: PMC10319979 DOI: 10.1093/genetics/iyad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
The auxin-inducible degradation system has been widely adopted in the Caenorhabditis elegans research community for its ability to empirically control the spatiotemporal expression of target proteins. This system can efficiently degrade auxin-inducible degron (AID)-tagged proteins via the expression of a ligand-activatable AtTIR1 protein derived from A. thaliana that adapts target proteins to the endogenous C. elegans proteasome. While broad expression of AtTIR1 using strong, ubiquitous promoters can lead to rapid degradation of AID-tagged proteins, cell type-specific expression of AtTIR1 using spatially restricted promoters often results in less efficient target protein degradation. To circumvent this limitation, we have developed an FLP/FRT3-based system that functions to reanimate a dormant, high-powered promoter that can drive sufficient AtTIR1 expression in a cell type-specific manner. We benchmark the utility of this system by generating a number of tissue-specific FLP-ON::TIR1 drivers to reveal genetically separable cell type-specific phenotypes for several target proteins. We also demonstrate that the FLP-ON::TIR1 system is compatible with enhanced degron epitopes. Finally, we provide an expandable toolkit utilizing the basic FLP-ON::TIR1 system that can be adapted to drive optimized AtTIR1 expression in any tissue or cell type of interest.
Collapse
Affiliation(s)
- Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
7
|
Soukup EM, Bettinger JC, Mathies LD. Transcription factors regulating the fate and developmental potential of a multipotent progenitor in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac232. [PMID: 36063055 PMCID: PMC9635636 DOI: 10.1093/g3journal/jkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Multipotent stem and progenitor cells have the capacity to generate a limited array of related cell types. The Caenorhabditis elegans somatic gonadal precursors are multipotent progenitors that generate all 143 cells of the somatic gonad, including complex tissues and specialized signaling cells. To screen for candidate regulators of cell fate and multipotency, we identified transcription factor genes with higher expression in somatic gonadal precursors than in their differentiated sister, the head mesodermal cell. We used RNA interference or genetic mutants to reduce the function of 183 of these genes and examined the worms for defects in the somatic gonadal precursor cell fate or the ability to generate gonadal tissue types. We identify 8 genes that regulate somatic gonadal precursor fate, including the SWI/SNF chromatin remodeling complex gene swsn-3 and the Ci/GLI homolog tra-1, which is the terminal regulator of sex determination. Four genes are necessary for somatic gonadal precursors to generate the correct number and type of descendant cells. We show that the E2F homolog, efl-3, regulates the cell fate decision between distal tip cells and the sheath/spermathecal precursor. We find that the FACT complex gene hmg-4 is required for the generation of the correct number of somatic gonadal precursor descendants, and we define an earlier role for the nhr-25 nuclear hormone receptor-encoding gene, in addition to its previously described role in regulating the asymmetric division of somatic gonadal precursors. Overall, our data show that genes regulating cell fate are largely different from genes regulating developmental potential, demonstrating that these processes are genetically separable.
Collapse
Affiliation(s)
- Evan M Soukup
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Laura D Mathies
- Corresponding author: Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
8
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
Kroetz MB. Retooling conditional gene expression using a floxed exon. Trends Genet 2022; 38:785-786. [DOI: 10.1016/j.tig.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
|
10
|
Shaffer JM, Greenwald I. SALSA, a genetically encoded biosensor for spatiotemporal quantification of Notch signal transduction in vivo. Dev Cell 2022; 57:930-944.e6. [PMID: 35413239 PMCID: PMC9473748 DOI: 10.1016/j.devcel.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Notch-mediated lateral specification is a fundamental mechanism to resolve stochastic cell fate choices by amplifying initial differences between equivalent cells. To study how stochastic events impact Notch activity, we developed a biosensor, SALSA (sensor able to detect lateral signaling activity), consisting of an amplifying "switch"-Notch tagged with TEV protease-and a "reporter"-GFP fused to a nuclearly localized red fluorescent protein, separated by a TEVp cut site. When ligand activates Notch, TEVp enters the nucleus and releases GFP from its nuclear tether, allowing Notch activation to be quantified based on the changes in GFP subcellular localization. We show that SALSA accurately reports Notch activity in different signaling paradigms in Caenorhabditis elegans and use time-lapse imaging to test hypotheses about how stochastic elements ensure a reproducible and robust outcome in a canonical lin-12/Notch-mediated lateral signaling paradigm. SALSA should be generalizable to other experimental systems and be adaptable to increase options for bespoke "SynNotch" applications.
Collapse
Affiliation(s)
- Justin M Shaffer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|