1
|
Ábrahám Á, Dér L, Csákvári E, Vizsnyiczai G, Pap I, Lukács R, Varga-Zsíros V, Nagy K, Galajda P. Single-cell level LasR-mediated quorum sensing response of Pseudomonas aeruginosa to pulses of signal molecules. Sci Rep 2024; 14:16181. [PMID: 39003361 PMCID: PMC11246452 DOI: 10.1038/s41598-024-66706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Quorum sensing (QS) is a communication form between bacteria via small signal molecules that enables global gene regulation as a function of cell density. We applied a microfluidic mother machine to study the kinetics of the QS response of Pseudomonas aeruginosa bacteria to additions and withdrawals of signal molecules. We traced the fast buildup and the subsequent considerably slower decay of a population-level and single-cell-level QS response. We applied a mathematical model to explain the results quantitatively. We found significant heterogeneity in QS on the single-cell level, which may result from variations in quorum-controlled gene expression and protein degradation. Heterogeneity correlates with cell lineage history, too. We used single-cell data to define and quantitatively characterize the population-level quorum state. We found that the population-level QS response is well-defined. The buildup of the quorum is fast upon signal molecule addition. At the same time, its decay is much slower following signal withdrawal, and the quorum may be maintained for several hours in the absence of the signal. Furthermore, the quorum sensing response of the population was largely repeatable in subsequent pulses of signal molecules.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - László Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Eszter Csákvári
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Derkovits Fasor 2., Szeged, 6726, Hungary
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Imre Pap
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - Rebeka Lukács
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Vanda Varga-Zsíros
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Krisztina Nagy
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary.
| | - Péter Galajda
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
2
|
Prudhomme M, Johnston CHG, Soulet AL, Boyeldieu A, De Lemos D, Campo N, Polard P. Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics. Nat Commun 2024; 15:5625. [PMID: 38987237 PMCID: PMC11237056 DOI: 10.1038/s41467-024-49853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Competence for natural transformation is a central driver of genetic diversity in bacteria. In the human pathogen Streptococcus pneumoniae, competence exhibits a populational character mediated by the stress-induced ComABCDE quorum-sensing (QS) system. Here, we explore how this cell-to-cell communication mechanism proceeds and the functional properties acquired by competent cells grown under lethal stress. We show that populational competence development depends on self-induced cells stochastically emerging in response to stresses, including antibiotics. Competence then propagates through the population from a low threshold density of self-induced cells, defining a biphasic Self-Induction and Propagation (SI&P) QS mechanism. We also reveal that a competent population displays either increased sensitivity or improved tolerance to lethal doses of antibiotics, dependent in the latter case on the competence-induced ComM division inhibitor. Remarkably, these surviving competent cells also display an altered transformation potential. Thus, the unveiled SI&P QS mechanism shapes pneumococcal competence as a health sensor of the clonal population, promoting a bet-hedging strategy that both responds to and drives cells towards heterogeneity.
Collapse
Affiliation(s)
- Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Calum H G Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne Boyeldieu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.
- Université Paul Sabatier (Toulouse III), Toulouse, France.
| |
Collapse
|
3
|
Liu J, Wang Z, Zeng Y, Wang W, Tang S, Jia A. 1H-Pyrrole-2,5-dicarboxylic acid, a quorum sensing inhibitor from one endophytic fungus in Areca catechu L., acts as antibiotic accelerant against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1413728. [PMID: 39015339 PMCID: PMC11250523 DOI: 10.3389/fcimb.2024.1413728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa has already been stipulated as a "critical" pathogen, emphasizing the urgent need for researching and developing novel antibacterial agents due to multidrug resistance. Bacterial biofilm formation facilitates cystic fibrosis development and restricts the antibacterial potential of many current antibiotics. The capacity of P. aeruginosa to form biofilms and resist antibiotics is closely correlated with quorum sensing (QS). Bacterial QS is being contemplated as a promising target for developing novel antibacterial agents. QS inhibitors are a promising strategy for treating chronic infections. This study reported that the active compound PT22 (1H-pyrrole-2,5-dicarboxylic acid) isolated from Perenniporia tephropora FF2, one endophytic fungus from Areca catechu L., presents QS inhibitory activity against P. aeruginosa. Combined with gentamycin or piperacillin, PT22 functions as a novel antibiotic accelerant against P. aeruginosa. PT22 (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL) reduces the production of QS-related virulence factors, such as pyocyanin and rhamnolipid, and inhibits biofilm formation of P. aeruginosa PAO1 instead of affecting its growth. The architectural disruption of the biofilms was confirmed by visualization through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Real-time quantitative PCR (RT-qPCR) indicated that PT22 significantly attenuated the expression of QS-related genes followed by docking analysis of molecules against QS activator proteins. PT22 dramatically increased the survival rate of Galleria mellonella. PT22 combined with gentamycin or piperacillin presents significant inhibition of biofilm formation and eradication of mature biofilm compared to monotherapy, which was also confirmed by visualization through SEM and CLSM. After being treated with PT22 combined with gentamycin or piperacillin, the survival rates of G. mellonella were significantly increased compared to those of monotherapy. PT22 significantly enhanced the susceptibility of gentamycin and piperacillin against P. aeruginosa PAO1. Our results suggest that PT22 from P. tephropora FF2 as a potent QS inhibitor is a candidate antibiotic accelerant to combat the antibiotic resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhennan Wang
- Modern Industrial College of Traditional Chinese Medicine and Health, Lishui University, Lishui, China
| | - Yuexiang Zeng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Aiqun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Cravo F, Függer M, Nowak T. An Allee-based distributed algorithm for microbial whole-cell sensors. NPJ Syst Biol Appl 2024; 10:43. [PMID: 38649364 PMCID: PMC11035582 DOI: 10.1038/s41540-024-00363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Reliable detection of substances present at potentially low concentrations is a problem common to many biomedical applications. Complementary to well-established enzyme-, antibody-antigen-, and sequencing-based approaches, so-called microbial whole-cell sensors, i.e., synthetically engineered microbial cells that sense and report substances, have been proposed as alternatives. Typically these cells operate independently: a cell reports an analyte upon local detection.In this work, we analyze a distributed algorithm for microbial whole-cell sensors, where cells communicate to coordinate if an analyte has been detected. The algorithm, inspired by the Allee effect in biological populations, causes cells to alternate between a logical 0 and 1 state in response to reacting with the particle of interest. When the cells in the logical 1 state exceed a threshold, the algorithm converts the remaining cells to the logical 1 state, representing an easily-detectable output signal. We validate the algorithm through mathematical analysis and simulations, demonstrating that it works correctly even in noisy cellular environments.
Collapse
Affiliation(s)
- Fabricio Cravo
- LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France
- LISN, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Matthias Függer
- LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France.
| | - Thomas Nowak
- LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
5
|
Deery J, Carmody M, Flavin R, Tomanek M, O'Keeffe M, McGlacken GP, Reen FJ. Comparative genomics reveals distinct diversification patterns among LysR-type transcriptional regulators in the ESKAPE pathogen Pseudomonas aeruginosa. Microb Genom 2024; 10:001205. [PMID: 38421269 PMCID: PMC10926688 DOI: 10.1099/mgen.0.001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Pseudomonas aeruginosa, a harmful nosocomial pathogen associated with cystic fibrosis and burn wounds, encodes for a large number of LysR-type transcriptional regulator proteins. To understand how and why LTTR proteins evolved with such frequency and to establish whether any relationships exist within the distribution we set out to identify the patterns underpinning LTTR distribution in P. aeruginosa and to uncover cluster-based relationships within the pangenome. Comparative genomic studies revealed that in the JGI IMG database alone ~86 000 LTTRs are present across the sequenced genomes (n=699). They are widely distributed across the species, with core LTTRs present in >93 % of the genomes and accessory LTTRs present in <7 %. Analysis showed that subsets of core LTTRs can be classified as either variable (typically specific to P. aeruginosa) or conserved (and found to be distributed in other Pseudomonas species). Extending the analysis to the more extensive Pseudomonas database, PA14 rooted analysis confirmed the diversification patterns and revealed PqsR, the receptor for the Pseudomonas quinolone signal (PQS) and 2-heptyl-4-quinolone (HHQ) quorum-sensing signals, to be amongst the most variable in the dataset. Successful complementation of the PAO1 pqsR - mutant using representative variant pqsR sequences suggests a degree of structural promiscuity within the most variable of LTTRs, several of which play a prominent role in signalling and communication. These findings provide a new insight into the diversification of LTTR proteins within the P. aeruginosa species and suggests a functional significance to the cluster, conservation and distribution patterns identified.
Collapse
Affiliation(s)
- Jamie Deery
- School of Microbiology, University College Cork, Cork, Ireland
| | - Muireann Carmody
- School of Microbiology, University College Cork, Cork, Ireland
- School of Chemistry, University College Cork, Cork, Ireland
| | - Rhiannon Flavin
- School of Microbiology, University College Cork, Cork, Ireland
| | - Malwina Tomanek
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria O'Keeffe
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P. McGlacken
- School of Chemistry, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F. Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Goo E, Hwang I. Control of bacterial quorum threshold for metabolic homeostasis and cooperativity. Microbiol Spectr 2024; 12:e0335323. [PMID: 38084969 PMCID: PMC10783058 DOI: 10.1128/spectrum.03353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The mechanisms used by various bacteria to determine whether their density is sufficient to meet the QS threshold, how stringently bacterial cells block QS initiation until the QS threshold is reached, and the impacts of low-density bacterial cells encountering conditions that exceed the QS threshold are longstanding gaps in QS research. We demonstrated that translational control of the QS signaling biosynthetic gene creates a stringent QS threshold to maintain metabolic balance at low cell densities. The emergence of non-cooperative cells underlines the critical role of stringent QS modulation in maintaining the integrity of the bacterial QS system, demonstrating that a lack of such control can serve as a selection pressure. The fate of quorum-calling cells exposed to exceeding the QS threshold clarifies QS bacteria evolution in complex ecosystems.
Collapse
Affiliation(s)
- Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Mellini M, Letizia M, Caruso L, Guiducci A, Meneghini C, Heeb S, Williams P, Cámara M, Visca P, Imperi F, Leoni L, Rampioni G. RsaL-driven negative regulation promotes heterogeneity in Pseudomonas aeruginosa quorum sensing. mBio 2023; 14:e0203923. [PMID: 37843294 PMCID: PMC10746200 DOI: 10.1128/mbio.02039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Single-cell analyses can reveal that despite experiencing identical physico-chemical conditions, individual bacterial cells within a monoclonal population may exhibit variations in gene expression. Such phenotypic heterogeneity has been described for several aspects of bacterial physiology, including QS activation. This study demonstrates that the transition of non-quorate cells to the quorate state is a graded process that does not occur at a specific cell density and that subpopulations of non-quorate cells also persist at high cell density. Here, we provide a mechanistic explanation for this phenomenon, showing that a negative feedback regulatory loop integrated into the las system has a pivotal role in promoting cell-to-cell variation in the QS activation state and in limiting the transition of non-quorate cells to the quorate state in P. aeruginosa.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Venturi V, Špacapan M, Ristović N, Bez C. RsaM: a unique dominant regulator of AHL quorum sensing in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001417. [PMID: 38010341 PMCID: PMC10710839 DOI: 10.1099/mic.0.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Quorum sensing (QS) in proteobacteria is a mechanism to control gene expression orchestrated by the LuxI/LuxR protein family pair, which produces and responds to N-acyl homoserine lactone (AHL) diffusible signal molecules. QS is often regarded as a cell density response via the sensing of/response to the concentrations of AHLs, which are constantly basally produced by bacterial cells. The luxI/R systems, however, undergo supra-regulation in response to external stimuli and many regulators have been implicated in controlling QS in bacteria, although it remains unclear how most of these regulators and cues contribute to the QS response. One regulator, called RsaM, has been reported in a few proteobacterial species to have a stringent role in the control of AHL QS. RsaMs are small, in the range of 140-170 aa long, and are found in several genera, principally in Burkholderia and Acinetobacter. The gene encoding RsaM is always located as an independent transcriptional unit, situated adjacent to QS luxI and/or luxR loci. One of the most remarkable aspects of RsaM is its uniqueness; it does not fall into any of the known bacterial regulatory families and it possesses a distinct and novel fold that does not exhibit binding affinity for nucleic acids or AHLs. RsaM stands out as a distinctive regulator in bacteria, as it is likely to have an important ecological role, as well as unravelling a novel way of gene regulation in bacteria.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mihael Špacapan
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nemanja Ristović
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
9
|
Abstract
The first discovered and well-characterized bacterial quorum sensing (QS) system belongs to Vibrio fischeri, which uses N-acyl homo-serine lactones (AHLs) for cell-cell signaling. AHL QS cell-cell communication is often regarded as a cell density-dependent regulatory switch. Since the discovery of QS, it has been known that AHL concentration (which correlates imperfectly with cell density) is not necessarily the only QS trigger. Additionally, not all cells respond to a QS signal. Bacteria could, via QS, exhibit phenotypic heterogeneity, resulting in sub-populations with unique phenotypes. It is time to ascribe greater importance to QS-dependent phenotypic heterogeneity, and its potential purpose in natura, with emphasis on the division of labor, specialization, and "bet-hedging". We hope that this perspective article will stimulate the awareness that QS can be more than just a cell-density switch. This basic mechanism could result in "bacterial civilizations", thus forcing us to reconsider the way bacterial communities are envisioned in natura.
Collapse
Affiliation(s)
- Mihael Spacapan
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
10
|
Danevčič T, Spacapan M, Dragoš A, Kovács ÁT, Mandic-Mulec I. DegQ is an important policing link between quorum sensing and regulated adaptative traits in Bacillus subtilis. Microbiol Spectr 2023; 11:e0090823. [PMID: 37676037 PMCID: PMC10581247 DOI: 10.1128/spectrum.00908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
Quorum sensing (QS) is a widespread bacterial communication system that controls important adaptive traits in a cell density-dependent manner. However, mechanisms by which QS-regulated traits are linked within the cell and mechanisms by which these links affect adaptation are not well understood. In this study, Bacillus subtilis was used as a model bacterium to investigate the link between the ComQXPA QS system, DegQ, surfactin and protease production in planktonic and biofilm cultures. The work tests two alternative hypotheses predicting that hypersensitivity of the QS signal-deficient mutant (comQ::kan) to exogenously added ComX, resulting in increased surfactin production, is linked to an additional genetic locus, or alternatively, to overexpression of the ComX receptor ComP. Results are in agreement with the first hypothesis and show that the P srfAA hypersensitivity of the comQ::kan mutant is linked to a 168 strain-specific mutation in the P degQ region. Hence, the markerless ΔcomQ mutant lacking this mutation is not overresponsive to ComX. Such hyper-responsiveness is specific for the P srfAA and not detected in another ComX-regulated promoter, the P aprE , which is under the positive control by DegQ. Our results suggest that DegQ by exerting differential effect on P srfAA and P aprE acts as a policing mechanism and the intracellular link, which guards the cell from an overinvestment into surfactin production. IMPORTANCE DegQ levels are known to regulate surfactin synthesis and extracellular protease production, and DegQ is under the control of the ComX-dependent QS. DegQ also serves as an important policing link between these QS-regulated processes, preventing overinvestment in these costly processes. This work highlights the importance of DegQ, which acts as the intracellular link between ComX production and the response by regulating extracellular degradative enzyme synthesis and surfactin production.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Mihael Spacapan
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Ákos T. Kovács
- Department of Biotechnology and Biomedicine, Bacterial Interactions and Evolution Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ines Mandic-Mulec
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
11
|
Duan JL, Wu L, Zhang P, Ma JY, Sun XD, Liu XY, Geng FS, Liu MY, Sun YC, Cai C, Yan Z, Yuan XZ. In Situ Probing of the Intrinsic Adhesion Strength of Single Anaerobic Microbial Cells. Anal Chem 2023; 95:8325-8331. [PMID: 37191948 DOI: 10.1021/acs.analchem.3c00795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Probing the single-cell mechanobiology in situ is imperative for microbial processes in the medical, industrial, and agricultural realms, but it remains a challenge. Herein, we present a single-cell force microscopy method that can be used to measure microbial adhesion strength under anaerobic conditions in situ. This method integrates atomic force microscopy with an anaerobic liquid cell and inverted fluorescence microscopy. We obtained the nanomechanical measurements of the single anaerobic bacterium Ethanoligenens harbinense YUAN-3 and the methanogenic archaeon Methanosarcina acetivorans C2A and their nanoscale adhesion forces in the presence of sulfoxaflor, a successor of neonicotinoid pesticides. This study presents a new tool for in situ single-cell force measurements of various anoxic and anaerobic species and provides new perspectives for evaluating the potential environmental risk of neonicotinoid applications in ecosystems.
Collapse
Affiliation(s)
- Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lei Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fan-Shu Geng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Mei-Yan Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yu-Chen Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhen Yan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
12
|
Schuster M, Li C, Smith P, Kuttler C. Parameters, architecture and emergent properties of the Pseudomonas aeruginosa LasI/LasR quorum-sensing circuit. J R Soc Interface 2023; 20:20220825. [PMID: 36919437 PMCID: PMC10015328 DOI: 10.1098/rsif.2022.0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Quorum sensing is a widespread process in bacteria that controls collective behaviours in response to cell density. Populations of cells coordinate gene expression through the perception of self-produced chemical signals. Although this process is well-characterized genetically and biochemically, quantitative information about network properties, including induction dynamics and steady-state behaviour, is scarce. Here we integrate experiments with mathematical modelling to quantitatively analyse the LasI/LasR quorum sensing pathway in the opportunistic pathogen Pseudomonas aeruginosa. We determine key kinetic parameters of the pathway and, using the parametrized model, show that quorum sensing behaves as a bistable hysteretic switch, with stable on and off states. We investigate the significance of feedback architecture and find that positive feedback on signal production is critical for induction dynamics and bistability, whereas positive feedback on receptor expression and negative feedback on signal production play a minor role. Taken together, our data-based modelling approach reveals fundamental and emergent properties of a bacterial quorum sensing circuit, and provides evidence that native quorum sensing can indeed function as the gene expression switch it is commonly perceived to be.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Christina Li
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Christina Kuttler
- Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|