1
|
King JA, Hine PJ, Baker DL, Ries ME. Understanding the Dissolution of Cellulose and Silk Fibroin in 1-ethyl-3-methylimidazolium Acetate and Dimethyl Sulphoxide for Application in Hybrid Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5262. [PMID: 39517537 PMCID: PMC11547638 DOI: 10.3390/ma17215262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
This paper investigates the dissolution of two biopolymers, cellulose and silk fibroin, in a mixture of 1-ethyl-3-methylimidazolium acetate (EmimAc) and dimethyl sulphoxide (DMSO). EmimAc is a promising environmentally friendly solvent currently in wide use but can be limited by its high viscosity, which inhibits the speed of dissolution. To mediate this, DMSO has been used as a cosolvent and has been shown to significantly lower the solution viscosity and aid mass transport. Dissolution experiments are carried out separately for both cellulose and silk fibrion with a range of EmimAc:DMSO ratios from 100 wt% EmimAc to 100 wt% DMSO. Interestingly, the optimal EmimAc:DMSO ratio (in terms of dissolution speed) is found to be very different for the two biopolymers. For cellulose, a mixture of 20 wt% EmimAc with 80 wt% DMSO is found to have the fastest dissolution speed, while for silk fibroin, a ratio of 80 wt% EmimAc with 20 wt% DMSO proves the fastest. These dissolution trials are complemented by rheological and nuclear magnetic resonance experiments to provide further insight into the underlying mechanisms. Finally, we produce hybrid biopolymer films from a solution to show how this work provides a foundation for future effective dissolution and the preparation of hybrid biopolymer films and hybrid biocomposites.
Collapse
Affiliation(s)
| | | | | | - Michael E. Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (J.A.K.); (P.J.H.); (D.L.B.)
| |
Collapse
|
2
|
Vinutha HA, Marchand M, Caggioni M, Vasisht VV, Del Gado E, Trappe V. Memory of shear flow in soft jammed materials. PNAS NEXUS 2024; 3:pgae441. [PMID: 39416763 PMCID: PMC11482252 DOI: 10.1093/pnasnexus/pgae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Cessation of flow in yield stress fluids results in a stress relaxation process that eventually leads to a finite residual stress. Both the rate of stress relaxation and the magnitude of the residual stresses systematically depend on the preceding flow conditions. To assess the microscopic origin of this memory effect, we combine experiments with large-scale computer simulations, exploring the behavior of jammed suspensions of soft repulsive particles. A spatiotemporal analysis of particle motion reveals that memory formation during flow is primarily governed by the emergence of domains of spatially correlated nonaffine displacements. These domains imprint the configuration of stress imbalances that drive dynamics upon flow cessation, as evidenced by a striking equivalence of the spatial correlation patterns in particle displacements observed during flow and upon flow cessation. Additional contributions to stress relaxation result from the particle packing that reorganizes to minimize the resistance to flow by decreasing the number of locally stiffer configurations. Regaining rigidity upon flow cessation drives further relaxation and effectively sets the magnitude of the residual stress. Our findings highlight that flow in yield stress fluids can be seen as a training process during which the material stores information of the flowing state through the development of domains of correlated particle displacements and the reorganization of particle packings optimized to sustain the flow. This encoded memory can then be retrieved in flow cessation experiments.
Collapse
Affiliation(s)
- H A Vinutha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Manon Marchand
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Marco Caggioni
- Complex Fluid Microstructures, Corporate Engineering, Procter & Gamble Company, West Chester, OH 45069, USA
| | - Vishwas V Vasisht
- Department of Physics, Indian Institute of Technology Palakkad, Nila Campus, Kanjikode, Palakkad, Kerala 678623, India
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Veronique Trappe
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Anthuparambil ND, Timmermann S, Dargasz M, Retzbach S, Senft MD, Begam N, Ragulskaya A, Paulus M, Zhang F, Westermeier F, Sprung M, Schreiber F, Gutt C. Salt induced slowdown of kinetics and dynamics during thermal gelation of egg-yolk. J Chem Phys 2024; 161:055102. [PMID: 39105556 DOI: 10.1063/5.0219004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
We investigated the effect of the NaCl concentration (0.3-2M) on the structure and dynamics of hen egg yolk at room temperature and during thermal gelation at temperatures in the range of 66-90 °C utilizing low-dose x-ray photon correlation spectroscopy in ultra-small angle x-ray scattering geometry. With an increase in the salt concentration, we observe progressive structural and dynamic changes at room temperature, indicating the disruption of yolk components such as yolk-granules and yolk-plasma proteins. Temperature- and salt-dependent structural and dynamic investigations suggest a delay in the gel formation and aggregation of yolk low-density lipoproteins with increasing ionic strength. However, the time-temperature superposition relationship observed in all samples suggests an identical mechanism underlying protein aggregation-gelation with a temperature-dependent reaction rate. The sol-gel transition time extracted from kinetic and dynamic information follows Arrhenius's behavior, and the activation energy (460 kJ/mol) is found to be independent of the salt concentration.
Collapse
Affiliation(s)
| | | | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | | | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| |
Collapse
|
4
|
He H, Liang H, Chu M, Jiang Z, de Pablo JJ, Tirrell MV, Narayanan S, Chen W. Transport coefficient approach for characterizing nonequilibrium dynamics in soft matter. Proc Natl Acad Sci U S A 2024; 121:e2401162121. [PMID: 39042671 PMCID: PMC11295068 DOI: 10.1073/pnas.2401162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
Collapse
Affiliation(s)
- HongRui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Miaoqi Chu
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Zhang Jiang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Juan J. de Pablo
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Suresh Narayanan
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
5
|
Horwath JP, Lin XM, He H, Zhang Q, Dufresne EM, Chu M, Sankaranarayanan SKRS, Chen W, Narayanan S, Cherukara MJ. AI-NERD: Elucidation of relaxation dynamics beyond equilibrium through AI-informed X-ray photon correlation spectroscopy. Nat Commun 2024; 15:5945. [PMID: 39009571 PMCID: PMC11251071 DOI: 10.1038/s41467-024-49381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work, we have developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. We demonstrate how this method can be used to accelerate exploration of large datasets to identify samples of interest, and we apply this approach to directly correlate microscopic dynamics with macroscopic properties of a model system. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.
Collapse
Affiliation(s)
- James P Horwath
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Hongrui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Miaoqi Chu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | | |
Collapse
|
6
|
Wu R, Meli D, Strzalka J, Narayanan S, Zhang Q, Paulsen BD, Rivnay J, Takacs CJ. Bridging length scales in organic mixed ionic-electronic conductors through internal strain and mesoscale dynamics. NATURE MATERIALS 2024; 23:648-655. [PMID: 38409601 DOI: 10.1038/s41563-024-01813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Understanding the structural and dynamic properties of disordered systems at the mesoscale is crucial. This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which undergo significant and complex structural changes when operated in an electrolyte. In this study, we investigate the mesoscale strain, reversibility and dynamics of a model OMIEC material under external electrochemical potential using operando X-ray photon correlation spectroscopy. Our results reveal that strain and structural hysteresis depend on the sample's cycling history, establishing a comprehensive kinetic sequence bridging the macroscopic and microscopic behaviours of OMIECs. Furthermore, we uncover the equilibrium and non-equilibrium dynamics of charge carriers and material-doping states, highlighting the unexpected coupling between charge carrier dynamics and mesoscale order. These findings advance our understanding of the structure-dynamics-function relationships in OMIECs, opening pathways for designing and engineering materials with improved performance and functionality in non-equilibrium states during device operation.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jonathan Rivnay
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Christopher J Takacs
- Hard X-ray Material Science Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
7
|
Saporta-Katz O, Moriel A. Self-driven configurational dynamics in frustrated spring-mass systems. Phys Rev E 2024; 109:024219. [PMID: 38491674 DOI: 10.1103/physreve.109.024219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
Various physical systems relax mechanical frustration through configurational rearrangements. We examine such rearrangements via Hamiltonian dynamics of simple internally stressed harmonic four-mass systems. We demonstrate theoretically and numerically how mechanical frustration controls the underlying potential energy landscape. Then, we examine the harmonic four-mass systems' Hamiltonian dynamics and relate the onset of chaotic motion to self-driven rearrangements. We show such configurational dynamics may occur without strong precursors, rendering such dynamics seemingly spontaneous.
Collapse
Affiliation(s)
- Ori Saporta-Katz
- Computer Science and Applied Mathematics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avraham Moriel
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Pinheiro D, Mitchel J. Pulling the strings on solid-to-liquid phase transitions in cell collectives. Curr Opin Cell Biol 2024; 86:102310. [PMID: 38176350 DOI: 10.1016/j.ceb.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Cell collectives must dynamically adapt to different biological contexts. For instance, in homeostatic conditions, epithelia must establish a barrier between body compartments and resist external stresses, while during development, wound healing or cancer invasion, these tissues undergo extensive remodeling. Using analogies from inert, passive materials, changes in cellular density, shape, rearrangements and/or migration were shown to result in collective transitions between solid and fluid states. However, what biological mechanisms govern these transitions remains an open question. In particular, the upstream signaling pathways and molecular effectors controlling the key physical axes determining tissue rheology and dynamics remain poorly understood. In this perspective, we focus on emerging evidence identifying the first biological signals determining the collective state of living tissues, with an emphasis on how these mechanisms are exploited for functionality across biological contexts.
Collapse
Affiliation(s)
- Diana Pinheiro
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Jennifer Mitchel
- Department of Biology, Wesleyan University, Middletown, CT, USA.
| |
Collapse
|
9
|
Song J, Kim S, Saouaf O, Owens C, McKinley GH, Holten-Andersen N. Soft Viscoelastic Magnetic Hydrogels from the In Situ Mineralization of Iron Oxide in Metal-Coordinate Polymer Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37916735 PMCID: PMC10658456 DOI: 10.1021/acsami.3c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/24/2023] [Indexed: 11/03/2023]
Abstract
The design of soft magnetic hydrogels with high concentrations of magnetic particles is complicated by weak retention of the iron oxide particles in the hydrogel scaffold. Here, we propose a design strategy that circumvents this problem through the in situ mineralization of iron oxide nanoparticles within polymer hydrogels functionalized with strongly iron-coordinating nitrocatechol groups. The mineralization process facilitates the synthesis of a high concentration of large iron oxide nanoparticles (up to 57 wt % dry mass per single cycle) in a simple one-step process under ambient conditions. The resulting hydrogels are soft (kPa range) and viscoelastic and exhibit strong magnetic actuation. This strategy offers a pathway for the energy-efficient design of soft, mechanically robust, and magneto-responsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Jake Song
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Sungjin Kim
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Olivia Saouaf
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Crystal Owens
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Gareth H. McKinley
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Niels Holten-Andersen
- Department
of Bioengineering and Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
10
|
Thijssen K, Liverpool TB, Royall CP, Jack RL. Necking and failure of a particulate gel strand: signatures of yielding on different length scales. SOFT MATTER 2023; 19:7412-7428. [PMID: 37743690 DOI: 10.1039/d3sm00681f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
"Sticky" spheres with a short-ranged attraction are a basic model of a wide range of materials from the atomic to the granular length scale. Among the complex phenomena exhibited by sticky spheres is the formation of far-from-equilibrium dynamically arrested networks which comprise "strands" of densely packed particles. The aging and failure of such gels under load is a remarkably challenging problem, given the simplicity of the model, as it involves multiple length- and time-scales, making a single approach ineffective. Here we tackle this challenge by addressing the failure of a single strand with a combination of methods. We study the mechanical response of a single strand of a model gel-former to deformation, both numerically and analytically. Under elongation, the strand breaks by a necking instability. We analyse this behaviour at three different length scales: a rheological continuum model of the whole strand; a microscopic analysis of the particle structure and dynamics; and the local stress tensor. Combining these different approaches gives a coherent picture of the necking and failure. The strand has an amorphous local structure and has large residual stresses from its initialisation. We find that neck formation is associated with increased plastic flow, a reduction in the stability of the local structure, and a reduction in the residual stresses; this indicates that the system loses its solid character and starts to behave more like a viscous fluid. These results will inform the development of more detailed models that incorporate the heterogeneous network structure of particulate gels.
Collapse
Affiliation(s)
- Kristian Thijssen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Robert L Jack
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| |
Collapse
|
11
|
Zhang Q, Wan G, Starchenko V, Hu G, Dufresne EM, Zhou H, Jeen H, Almazan IC, Dong Y, Liu H, Sandy AR, Sterbinsky GE, Lee HN, Ganesh P, Fong DD. Intermittent Defect Fluctuations in Oxide Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305383. [PMID: 37578079 DOI: 10.1002/adma.202305383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Indexed: 08/15/2023]
Abstract
The heterogeneous nature, local presence, and dynamic evolution of defects typically govern the ionic and electronic properties of a wide variety of functional materials. While the last 50 years have seen considerable efforts into development of new methods to identify the nature of defects in complex materials, such as the perovskite oxides, very little is known about defect dynamics and their influence on the functionality of a material. Here, the discovery of the intermittent behavior of point defects (oxygen vacancies) in oxide heterostructures employing X-ray photon correlation spectroscopy is reported. Local fluctuations between two ordered phases in strained SrCoOx with different degrees of stability of the oxygen vacancies are observed. Ab-initio-informed phase-field modeling reveals that fluctuations between the competing ordered phases are modulated by the oxygen ion/vacancy interaction energy and epitaxial strain. The results demonstrate how defect dynamics, evidenced by measurement and modeling of their temporal fluctuations, give rise to stochastic properties that now can be fully characterized using coherent X-rays, coupled for the first time to multiscale modeling in functional complex oxide heterostructures. The study and its findings open new avenues for engineering the dynamical response of functional materials used in neuromorphic and electrochemical applications.
Collapse
Affiliation(s)
- Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gang Wan
- Material Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Vitalii Starchenko
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Guoxiang Hu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Eric M Dufresne
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hua Zhou
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hyoungjeen Jeen
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Irene Calvo Almazan
- Material Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yongqi Dong
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Huajun Liu
- Material Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Alec R Sandy
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | | | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - P Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Dillon D Fong
- Material Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
12
|
Rodríguez-Cruz C, Molaei M, Thirumalaiswamy A, Feitosa K, Manoharan VN, Sivarajan S, Reich DH, Riggleman RA, Crocker JC. Experimental observations of fractal landscape dynamics in a dense emulsion. SOFT MATTER 2023; 19:6805-6813. [PMID: 37650227 DOI: 10.1039/d3sm00852e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Many soft and biological materials display so-called 'soft glassy' dynamics; their constituents undergo anomalous random motions and complex cooperative rearrangements. A recent simulation model of one soft glassy material, a coarsening foam, suggested that the random motions of its bubbles are due to the system configuration moving over a fractal energy landscape in high-dimensional space. Here we show that the salient geometrical features of such high-dimensional fractal landscapes can be explored and reliably quantified, using empirical trajectory data from many degrees of freedom, in a model-free manner. For a mayonnaise-like dense emulsion, analysis of the observed trajectories of oil droplets quantitatively reproduces the high-dimensional fractal geometry of the configuration path and its associated local energy minima generated using a computational model. That geometry in turn drives the droplets' complex random motion observed in real space. Our results indicate that experimental studies can elucidate whether the similar dynamics in different soft and biological materials may also be due to fractal landscape dynamics.
Collapse
Affiliation(s)
- Clary Rodríguez-Cruz
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mehdi Molaei
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Amruthesh Thirumalaiswamy
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Klebert Feitosa
- Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia, USA
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Shankar Sivarajan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Anthuparambil ND, Girelli A, Timmermann S, Kowalski M, Akhundzadeh MS, Retzbach S, Senft MD, Dargasz M, Gutmüller D, Hiremath A, Moron M, Öztürk Ö, Poggemann HF, Ragulskaya A, Begam N, Tosson A, Paulus M, Westermeier F, Zhang F, Sprung M, Schreiber F, Gutt C. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat Commun 2023; 14:5580. [PMID: 37696830 PMCID: PMC10495384 DOI: 10.1038/s41467-023-41202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.
Collapse
Affiliation(s)
- Nimmi Das Anthuparambil
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Marc Moron
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | | | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Amir Tosson
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| |
Collapse
|
14
|
Ozgulbas DY, Jensen D, Butler R, Vescovi R, Foster IT, Irvin M, Nakaye Y, Chu M, Dufresne EM, Seifert S, Babnigg G, Ramanathan A, Zhang Q. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS. LIGHT, SCIENCE & APPLICATIONS 2023; 12:196. [PMID: 37596264 PMCID: PMC10439219 DOI: 10.1038/s41377-023-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10-6-103 s /10-10-10-6 m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery.
Collapse
Affiliation(s)
- Doga Yamac Ozgulbas
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Don Jensen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Rory Butler
- Departement of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ian T Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Michael Irvin
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yasukazu Nakaye
- XRD Design and Engineering Department, Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Eric M Dufresne
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gyorgy Babnigg
- Bioscience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
15
|
Wu D, Narayanan S, Li R, Feng Y, Akcora P. The effect of dynamically heterogeneous interphases on the particle dynamics of polymer nanocomposites. SOFT MATTER 2023; 19:2764-2770. [PMID: 36988144 DOI: 10.1039/d2sm01617f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The entanglements of dynamically asymmetric polymer layers influence relaxations of nanoparticles in polymer nanocomposites. In this work, the dynamics of polymer-adsorbed and polymer-grafted nanoparticles in a poly(methyl acrylate) matrix polymer was investigated using X-ray photon correlation spectroscopy (XPCS) to understand the role of chain rigidity and chemical heterogeneities in particle dynamics. Locations of dynamic heterogeneities close to nanoparticles and away from particle surfaces were examined with the comparison of adsorbed and grafted nanoparticles. Our results show that the chemical heterogeneities around dispersed nanoparticles transitioned the particle dynamics from Brownian diffusion into hyperdiffusion, and moreover, the high rigidity of chains in the chemically heterogeneous interfacial layers slowed down the particle dynamics. The hyperdiffusion measured both in grafted particles and adsorbed particles was attributed to the dense interfacial mixing of dynamically heterogeneous chains.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ruhao Li
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Yi Feng
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| |
Collapse
|
16
|
Begam N, Timmermann S, Ragulskaya A, Girelli A, Senft MD, Retzbach S, Anthuparambil ND, Akhundzadeh MS, Kowalski M, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Effects of temperature and ionic strength on the microscopic structure and dynamics of egg white gels. J Chem Phys 2023; 158:074903. [PMID: 36813727 DOI: 10.1063/5.0130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We investigate the thermal gelation of egg white proteins at different temperatures with varying salt concentrations using x-ray photon correlation spectroscopy in the geometry of ultra-small angle x-ray scattering. Temperature-dependent structural investigation suggests a faster network formation with increasing temperature, and the gel adopts a more compact network, which is inconsistent with the conventional understanding of thermal aggregation. The resulting gel network shows a fractal dimension δ, ranging from 1.5 to 2.2. The values of δ display a non-monotonic behavior with increasing amount of salt. The corresponding dynamics in the q range of 0.002-0.1 nm-1 is observable after major change of the gel structure. The extracted relaxation time exhibits a two-step power law growth in dynamics as a function of waiting time. In the first regime, the dynamics is associated with structural growth, whereas the second regime is associated with the aging of the gel, which is directly linked with its compactness, as quantified by the fractal dimension. The gel dynamics is characterized by a compressed exponential relaxation with a ballistic-type of motion. The addition of salt gradually makes the early stage dynamics faster. Both gelation kinetics and microscopic dynamics show that the activation energy barrier in the system systematically decreases with increasing salt concentration.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|