1
|
Zhao W, Wang F, Li P, Li L, Ernst L, Huang L, Tian M, Lv W, Xu S, Liu F, Lin G, Lyu H, Paetz C, Feng X, Chen Y. Two O-acyltransferases from the diterpene biosynthetic gene cluster of Euphorbia lathyris contribute to the structural diversity of medicinal macrocyclic diterpenoid esters biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70003. [PMID: 39968625 DOI: 10.1111/tpj.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Macrocyclic diterpenoid esters from Euphorbiaceae plants hold significant medicinal value owing to their structural diversity and for attributing structural uniqueness and biological efficacy. However, the responsible enzymes for the acylation of macrocyclic diterpenoids remain unknown. We identified two macrocyclic diterpenoid O-acyltransferases, ElBAHD16 and ElBAHD35, from the diterpene biosynthetic gene cluster of Euphorbia lathyris. ElBAHD16 and ElBAHD35 were characterized both in vitro (using Escherichia coli) and in vivo (using Nicotiana benthamiana and E. lathyris) and exhibited mono-acylation activities toward the hydroxy groups of their substrates, 7-hydroxylathyrol and lathyrol. ElBAHD16 showed not only regioselectivity toward the 7-OH group of 7-hydroxylathyrol but also donor promiscuity, thereby producing three different mono-acylation products. Conversely, ElBAHD35 demonstrated specific recognition for the 5-OH group of 7-hydroxylathyrol and lathyrol, thereby mediating mono-acetylation reactions with acetyl-CoA, showing donor specificity. Site-directed mutagenesis revealed that residues H154 and T363 in ElBAHD16 are critical for its catalytic activity. Notably, the Q35 residue enhanced the efficiency of ElBAHD16, while the M296, N292, and F394 residues were crucial for its donor promiscuity. These findings elucidate the last step in the biosynthesis of macrocyclic diterpenoid esters and highlight the contribution of acyltransferases to the structural diversity of diterpenoids.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Fan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Lukas Ernst
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Long Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Wei Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Guyin Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Hui Lyu
- NMR/Biosynthesis Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Christian Paetz
- NMR/Biosynthesis Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Yu Z, Lv R, Hong B, Yang L. Integrating cotyledon-based virus-induced gene silencing with visual marker promises a rapid, highly effective validation of gene functions in Nepeta cataria. FRONTIERS IN PLANT SCIENCE 2025; 15:1514614. [PMID: 39906233 PMCID: PMC11790630 DOI: 10.3389/fpls.2024.1514614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025]
Abstract
Nepeta spp. generate volatile nepetalactone iridoids that have cat-attractant and insect-repellent activities. They differ from typical mint family (Lamiaceae) iridoids, which are non-volatile glucosides, and also vary from other species in the Nepetoideae sub-family, which do not generate iridoids. The chemistry and evolution of Nepeta make it suitable for further investigation. However, the lack of transgenic technology hampers the molecular and genetic investigations in Nepeta. Virus-induced gene silencing (VIGS) is a powerful tool to detect gene functions in vivo. Here, we constructed a modified VIGS method in Nepeta cataria, using cotyledon infiltration, with the gene silencing effect spreading to the first two pairs of true leaves. The VIGS efficiency reached as high as 84.4%, and the procedure takes only 3 weeks. We employed this method to validate the role of geraniol 8-hydroxylase in nepetalactone biosynthesis with ChlH as a visual marker in N. cataria. The method is also applicable to Nepeta mussinii. Thus, we developed an easy and effective VIGS approach, which will be advantageous for endogenous gene studies in two Nepeta species and holds the potential for application in other plants.
Collapse
Affiliation(s)
- Zongxia Yu
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ruo Lv
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Bo Hong
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
3
|
Lin G, Li P, Li L, Wang R, Zhao W, Tian M, Wu J, Xu S, Chen Y, Feng X. Discovery of ElABCG39: a key player in ingenol transmembrane efflux identified through genome-wide analysis of ABC transporters in Euphorbia lathyris L. PLANT CELL REPORTS 2024; 43:274. [PMID: 39470817 DOI: 10.1007/s00299-024-03361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
KEY MESSAGE Based on transport inhibition and genome-wide analysis, 123 ABC transporters of Euphorbia lathyris were identified, and it was found that the PDR family members ElABCG39 mediated ingenol efflux. Identification of ingenol biosynthetic enzymes and transporters in plant is fundamental to realize its biosynthesis in chassis cells. At present, several key enzymes of the ingenol biosynthesis pathway have been identified, while the mechanisms governing the accumulation or transport of ingenol to distinct plant tissue compartments remain elusive. In this study, transport inhibition analyses were performed, along with genome-wide identification of 123 genes encoding ABC proteins in Euphorbia lathyris L., eventually discovering that a PDR transporter ElABCG39 mediates ingenol transmembrane transport and is localized on the plasma membrane. Expression of this protein in yeast AD1-8 promoted the transmembrane efflux of ingenol with strong substrate specificity. Furthermore, in ElABCG39 RNAi transgenic hairy roots, ingenol transmembrane efflux was significantly reduced and hairy root growth was inhibited. The discovery of the first Euphorbia macrocyclic diterpene transporter ElABCG39 has not only further improved the ingenane diterpenoid biosynthesis regulatory network, but also provided a new key element for ingenol production in chassis cells.
Collapse
Affiliation(s)
- Guyin Lin
- Nanjing University of Chinese Medicine, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ruyuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Junzhi Wu
- Nanjing University of Chinese Medicine, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yu Chen
- Nanjing University of Chinese Medicine, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Xu Feng
- Nanjing University of Chinese Medicine, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
4
|
Wu S, Morotti ALM, Yang J, Wang E, Tatsis EC. Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. MOLECULAR PLANT 2024; 17:1439-1457. [PMID: 39135343 DOI: 10.1016/j.molp.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, "Hyper cells", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Science, Shanghai 200032, China.
| |
Collapse
|
5
|
Swamidatta SH, Lichman BR. Beyond co-expression: pathway discovery for plant pharmaceuticals. Curr Opin Biotechnol 2024; 88:103147. [PMID: 38833915 DOI: 10.1016/j.copbio.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Plant natural products have been an important source of medicinal molecules since ancient times. To gain access to the whole diversity of these molecules for pharmaceutical applications, it is important to understand their biosynthetic origins. Whilst co-expression is a reliable tool for identifying gene candidates, a variety of complementary methods can aid in screening or refining candidate selection. Here, we review recently employed plant biosynthetic pathway discovery approaches, and highlight future directions in the field.
Collapse
Affiliation(s)
- Sandesh H Swamidatta
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
6
|
Zhu H, Ren X, Huang Y, Su T, Yang L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023; 13:852. [PMID: 37512559 PMCID: PMC10384431 DOI: 10.3390/metabo13070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Euphorbia stracheyi Boiss was used for hemostasis, analgesia, and muscular regeneration in traditional Chinese medicine. To study the chemical constituents of E. stracheyi, the ethyl acetate part of the methanol extract of the whole plant was separated by silica gel, sephadex LH-20 column chromatography, and semi-preparative HPLC. The isolation led to the characterization of a new lathyrane type diterpenoid, euphostrachenol A (1), as well as eleven known compounds (2-11), including a lathyrane, three ingenane-type and two abietane-type diterpenoids, two ionones, and two flavonoids. The structures of these compounds were established using 1D- and 2D-NMR experiments, mass spectrometry, and X-ray crystallographic experiments. The MTT method was used to determine the cytotoxic activity of five cancer cell lines (Leukemia HL-60, lung cancer A-549, liver cancer SMMC-7721, breast cancer MCF-7, and colon cancer SW480) on the isolated compounds. However, only compound 4 showed moderate cytotoxicity against these cell lines, with IC50 values ranging from 10.28 to 29.70 μM, while the others were inactive. Our chemical investigation also confirmed the absence of jatrophane-type diterpenoids in the species, which may be related to its special habitat.
Collapse
Affiliation(s)
- Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiangxiang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yanbo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
7
|
Zhang Y, Wang X, Wang X, Wang Y, Liu J, Wang S, Li W, Jin Y, Akhter D, Chen J, Hu J, Pan R. Bioinformatic analysis of short-chain dehydrogenase/reductase proteins in plant peroxisomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1180647. [PMID: 37360717 PMCID: PMC10288848 DOI: 10.3389/fpls.2023.1180647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles housing not only many important oxidative metabolic reactions, but also some reductive reactions that are less known. Members of the short-chain dehydrogenase/reductase (SDR) superfamily, which are NAD(P)(H)-dependent oxidoreductases, play important roles in plant peroxisomes, including the conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid (IAA), auxiliary β-oxidation of fatty acids, and benzaldehyde production. To further explore the function of this family of proteins in the plant peroxisome, we performed an in silico search for peroxisomal SDR proteins from Arabidopsis based on the presence of peroxisome targeting signal peptides. A total of 11 proteins were discovered, among which four were experimentally confirmed to be peroxisomal in this study. Phylogenetic analyses showed the presence of peroxisomal SDR proteins in diverse plant species, indicating the functional conservation of this protein family in peroxisomal metabolism. Knowledge about the known peroxisomal SDRs from other species also allowed us to predict the function of plant SDR proteins within the same subgroup. Furthermore, in silico gene expression profiling revealed strong expression of most SDR genes in floral tissues and during seed germination, suggesting their involvement in reproduction and seed development. Finally, we explored the function of SDRj, a member of a novel subgroup of peroxisomal SDR proteins, by generating and analyzing CRISPR/Cas mutant lines. This work provides a foundation for future research on the biological activities of peroxisomal SDRs to fully understand the redox control of peroxisome functions.
Collapse
Affiliation(s)
- Yuchan Zhang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| | - Xiaowen Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xinyu Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yukang Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jun Liu
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Saisai Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weiran Li
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yijun Jin
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Delara Akhter
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jiarong Chen
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, United States
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
8
|
Reed J, Orme A, El-Demerdash A, Owen C, Martin LBB, Misra RC, Kikuchi S, Rejzek M, Martin AC, Harkess A, Leebens-Mack J, Louveau T, Stephenson MJ, Osbourn A. Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree. Science 2023; 379:1252-1264. [PMID: 36952412 DOI: 10.1126/science.adf3727] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.
Collapse
Affiliation(s)
- James Reed
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anastasia Orme
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Charlotte Owen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Rajesh C Misra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shingo Kikuchi
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Rejzek
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Thomas Louveau
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
9
|
Johnson AR, Yue Y, Carey SB, Park SJ, Kruse LH, Bao A, Pasha A, Harkess A, Provart NJ, Moghe GD, Frank MH. Chromosome-level Genome Assembly of Euphorbia peplus, a Model System for Plant Latex, Reveals that Relative Lack of Ty3 Transposons Contributed to Its Small Genome Size. Genome Biol Evol 2023; 15:evad018. [PMID: 36757383 PMCID: PMC10018070 DOI: 10.1093/gbe/evad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. Euphorbia peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2-Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with a BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and Euphorbia lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared with related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.
Collapse
Affiliation(s)
- Arielle R Johnson
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Yuanzheng Yue
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Se Jin Park
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Ashley Bao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| |
Collapse
|
10
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|