1
|
Xin D, Xing M, Ran G, Blossom BM. The influence of photosynthetic pigment chlorophyllin in light-driven LPMO system on the hydrolytic action of cellulases. Int J Biol Macromol 2024; 281:136714. [PMID: 39427785 DOI: 10.1016/j.ijbiomac.2024.136714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
It has been demonstrated that LPMO reactions can be driven by light, using the photosynthetic pigment chlorophyllin to achieve efficient oxidative degradation of cellulose. However, the effect of chlorophyllin on cellulases remains unclear. This study discovered that chlorophyllin does not affect the hydrolytic activity of cellulases under dark conditions. However, under light exposure, chlorophyllin-derived reactive oxygen species (ROS) exhibit a strong inhibitory effect on cellulases. These ROS primarily inhibit the hydrolytic action of endoglucanase II (Cel5A) and cellobiohydrolase II (Cel6A), while the action of cellobiohydrolase I and β-glucosidase remains unaffected. Scavenger studies revealed that singlet oxygen (1O₂) is the key inhibitory ROS responsible for the inhibition of Cel5A and Cel6A. The removal of 1O₂ by sodium azide effectively mitigates this inhibition, increasing the conversion yield of cellulose to glucose by 25.9 % when using the light-driven LPMO system in conjunction with cellulases. This study provides new insights into the role of chlorophyllin-derived 1O₂ in hindering hydrolytic action of cellulases and demonstrates the successful mitigation of this inhibition by sodium azide, thereby enhancing the cooperative degradation of cellulose to glucose by the light-driven LPMO system and cellulases.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China
| | - Minyu Xing
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China.
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark; Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, 04544 East Boothbay, ME, USA
| |
Collapse
|
2
|
Kracher D, Lanzmaier T, Carneiro LV. Active roles of lytic polysaccharide monooxygenases in human pathogenicity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141012. [PMID: 38492831 DOI: 10.1016/j.bbapap.2024.141012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are redox enzymes widely studied for their involvement in microbial and fungal biomass degradation. The catalytic versatility of these enzymes is demonstrated by the recent discovery of LPMOs in arthropods, viruses, insects and ferns, where they fulfill diverse functions beyond biomass conversion. This mini-review puts a spotlight on a recently recognized aspect of LPMOs: their role in infectious processes in human pathogens. It discusses the occurrence and potential biological mechanisms of LPMOs associated with human pathogens and provides an outlook on future avenues in this emerging and exciting research field.
Collapse
Affiliation(s)
- Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Tina Lanzmaier
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Leonor Vieira Carneiro
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
3
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
4
|
Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, Marcus S, Knox JP, Firdaus-Raih M, Henrissat B, Davies GJ, Walton PH, Parkin A, Hemsworth GR. Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae. IUCRJ 2024; 11:260-274. [PMID: 38446458 PMCID: PMC10916295 DOI: 10.1107/s2052252524001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
Collapse
Affiliation(s)
- Badri S. Rajagopal
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nick Yates
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jake Smith
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Catherine Tétard-Jones
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - William G. T. Willats
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Susan Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gideon J. Davies
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 2024; 8:106-119. [PMID: 38200220 DOI: 10.1038/s41570-023-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
Collapse
Affiliation(s)
- Alessia Munzone
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
| |
Collapse
|
6
|
de Oliveira Gorgulho Silva C, Vuillemin M, Kabel MA, van Berkel WJH, Meyer AS, Agger JW. Polyphenol Oxidase Products Are Priming Agents for LPMO Peroxygenase Activity. CHEMSUSCHEM 2023; 16:e202300559. [PMID: 37278305 DOI: 10.1002/cssc.202300559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Polyphenol oxidases catalyze the hydroxylation of monophenols to diphenols, which are reducing agents for lytic polysaccharide monooxygenases (LPMOs) in their degradation of cellulose. In particular, the polyphenol oxidase MtPPO7 from Myceliophthora thermophila converts lignocellulose-derived monophenols, and under the new perspective of the peroxygenase reaction catalyzed by LPMOs, we aim to differentiate the role of the catalytic products of MtPPO7 in priming and fueling of LPMO activity. Exemplified by the activity of MtPPO7 towards guaiacol and by using the benchmark LPMO NcAA9C from Neurospora crassa we show that MtPPO7 catalytic products provide the initial electron for the reduction of Cu(II) to Cu(I) but cannot provide the required reducing power for continuous fueling of the LPMO. The priming reaction is shown to occur with catalytic amounts of MtPPO7 products and those compounds do not generate substantial amounts of H2 O2 in situ to fuel the LPMO peroxygenase activity. Reducing agents with a low propensity to generate H2 O2 can provide the means for controlling the LPMO catalysis through exogenous H2 O2 and thereby minimize any enzyme inactivation.
Collapse
Affiliation(s)
| | - Marlene Vuillemin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs Lyngby, Denmark
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs Lyngby, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
7
|
Kuusk S, Eijsink VGH, Väljamäe P. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. J Biol Chem 2023; 299:105094. [PMID: 37507015 PMCID: PMC10458328 DOI: 10.1016/j.jbc.2023.105094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
8
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Essays Biochem 2023; 67:585-595. [PMID: 36748351 PMCID: PMC10154616 DOI: 10.1042/ebc20220164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
The plant cell wall is rich in carbohydrates and many fungi and bacteria have evolved to take advantage of this carbon source. These carbohydrates are largely locked away in polysaccharides and so these organisms deploy a range of enzymes that can liberate individual sugars from these challenging substrates. Glycoside hydrolases (GHs) are the enzymes that are largely responsible for bringing about this sugar release; however, 12 years ago, a family of enzymes known as lytic polysaccharide monooxygenases (LPMOs) were also shown to be of key importance in this process. LPMOs are copper-dependent oxidative enzymes that can introduce chain breaks within polysaccharide chains. Initial work demonstrated that they could activate O2 to attack the substrate through a reaction that most likely required multiple electrons to be delivered to the enzyme. More recently, it has emerged that LPMO kinetics are significantly improved if H2O2 is supplied to the enzyme as a cosubstrate instead of O2. Only a single electron is required to activate an LPMO and H2O2 cosubstrate and the enzyme has been shown to catalyse multiple turnovers following the initial one-electron reduction of the copper, which is not possible if O2 is used. This has led to further studies of the roles of the electron donor in LPMO biochemistry, and this review aims to highlight recent findings in this area and consider how ongoing research could impact our understanding of the interplay between redox processes in nature.
Collapse
|