1
|
Cao M, Jia Y, Lu X, Huang J, Yao Y, Hong L, Zhu W, Wang W, Zhu F, Hong C. Temporal and Spatial Variation of Toxic Metal Concentrations in Cultivated Soil in Jiaxing, Zhejiang Province, China: Characteristics and Mechanisms. TOXICS 2024; 12:390. [PMID: 38922070 PMCID: PMC11209030 DOI: 10.3390/toxics12060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The toxic metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) pollution in 250 agricultural soil samples representing the urban area of Jiaxing was studied to investigate the temporal and spatial variations. Compared to the early 1990s, the pollution level has increased. Industry and urbanization were the main factors causing toxic metal pollution on temporal variation, especially the use of feed containing toxic metals. The soil types and crop cultivation methods are the main factors causing toxic metal pollution on spatial variation. Although the single-factor pollution indices of all the toxic metals were within the safe limits, as per the National Soil Environmental Quality Standard (risk screening value), if the background values of soil elements in Jiaxing City are used as the standard, the pollution index of all the elements surveyed exceeds 1.0, reaching a level of mild pollution. The soil samples investigated were heavily contaminated with toxic metal compounds, and their levels increased over time. This situation poses potential ecological and health risks.
Collapse
Affiliation(s)
- Mengzhuo Cao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
- Shanghai Huadi Environmental Technology Co., Ltd., Shanghai 201803, China
| | - Yanbo Jia
- Hangzhou Institution of Food and Drug Control, Hangzhou 310022, China;
| | - Xin Lu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| | - Jinfa Huang
- Jiaxing Soil and Fertilizer Plant Protection and Rural Energy Station, Jiaxing Agriculture and Rural Bureau, Jiaxing 314050, China;
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| | - Leidong Hong
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| | - Weijing Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| | - Weiping Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| | - Fengxiang Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| | - Chunlai Hong
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.C.); (X.L.); (Y.Y.); (L.H.); (W.Z.); (W.W.); (F.Z.)
| |
Collapse
|
2
|
Li Y, Zhang C, Yang M, Liu J, He H, Ma Y, Arai Y. Effects of carbonate on ferrihydrite transformation in alkaline media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:288-297. [PMID: 38258502 DOI: 10.1039/d3em00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaoqun Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, 999078, Macau, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Cárdenas-Hernández PA, Hickey K, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Linear Free Energy Relationship for Predicting the Rate Constants of Munition Compound Reduction by the Fe(II)-Hematite and Fe(II)-Goethite Redox Couples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13646-13657. [PMID: 37610109 DOI: 10.1021/acs.est.3c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abiotic reduction by iron minerals is arguably the most important fate process for munition compounds (MCs) in subsurface environments. No model currently exists that can predict the abiotic reduction rates of structurally diverse MCs by iron (oxyhydr)oxides. We performed batch experiments to measure the rate constants for the reduction of three classes of MCs (poly-nitroaromatics, nitramines, and azoles) by hematite or goethite in the presence of aqueous Fe2+. The surface area-normalized reduction rate constant (kSA) depended on the aqueous-phase one-electron reduction potential (EH1) of the MC and the thermodynamic state (i.e., pe and pH) of the iron oxide-Feaq2+ system. A linear free energy relationship (LFER), similar to that reported previously for nitrobenzene, successfully captures all MC reduction rate constants that span 6 orders of magnitude: log ( k S A ) = ( 1.12 ± 0.04 ) [ 0.53 E H 1 59 m V - ( p H + p e ) ] + ( 5.52 ± 0.23 ) . The finding that the rate constants of all the different classes of MCs can be described by a single LFER suggests that these structurally diverse nitro compounds are reduced by iron oxide-Feaq2+ couples through a common mechanism up to the rate-limiting step. Multiple mechanistic implications of the results are discussed. This study expands the applicability of the LFER model for predicting the reduction rates of legacy and emerging MCs and potentially other nitro compounds.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kevin Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Hickey KP, Cardenas-Hernandez P, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Thermodynamic Two-Site Surface Reaction Model for Predicting Munition Constituent Reduction Kinetics with Iron (Oxyhydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12411-12420. [PMID: 37566737 DOI: 10.1021/acs.est.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Iron (oxyhydr)oxides comprise a significant portion of the redox-active fraction of soils and are key reductants for remediation of sites contaminated with munition constituents (MCs). Previous studies of MC reduction kinetics with iron oxides have focused on the concentration of sorbed Fe(II) as a key parameter. To build a reaction kinetic model, it is necessary to predict the concentration of sorbed Fe(II) as a function of system conditions and the redox state. A thermodynamic framework is formulated that includes a generalized double-layer model that utilizes surface acidity and surface complexation reactions to predict sorbed Fe(II) concentrations that are used for fitting MC reduction kinetics. Monodentate- and bidentate Fe(II)-binding sites are used with individual oxide sorption characteristics determined through data fitting. Results with four oxides (goethite, hematite, lepidocrocite, and ferrihydrite) and four nitro compounds (NB, CN-NB, Cl-NB, and NTO) from six separate studies have shown good agreement when comparing observed and predicted surface area-normalized rate constants. While both site types are required to reproduce the experimental redox titration, only the monodentate site concentration controls the MC reaction kinetics. This model represents a significant step toward predicting the timescales of MC degradation in the subsurface.
Collapse
Affiliation(s)
- Kevin P Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Paula Cardenas-Hernandez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|