1
|
Wu Z, Zhang Y, Cheng Y, Li J, Li F, Wang C, Shi L, Qin G, Zhan W, Cai Y, Xie X, Ling J, Hu H, Zhang J, Deng Y. PD-1 blockade plus COX inhibitors in dMMR metastatic colorectal cancer: Clinical, genomic, and immunologic analyses from the PCOX trial. MED 2024; 5:998-1015.e6. [PMID: 38795703 DOI: 10.1016/j.medj.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Approximately 20% of patients with DNA mismatch repair deficiency (dMMR) metastatic colorectal cancer do not respond to anti-programmed death-1 (PD-1) ligand therapy, and baseline biomarkers of response are lacking. METHODS We conducted a phase 2 study to evaluate the efficacy of cyclooxygenase (COX) inhibitors in combination with anti-PD-1 therapy in patients with dMMR metastatic colorectal cancer. The primary endpoint was objective response rate. The secondary endpoints included progression-free survival (PFS), overall survival (OS), disease control rate, duration of response, and safety. FINDINGS A total of 30 patients were enrolled, and the objective response rate was 73.3%, meeting the predefined endpoint of 68%. The median PFS and median OS were not reached at a median follow-up period of 50.8 months. Disease control was achieved in 28 patients (93.3%). The median duration of response was not reached. The combination was well tolerated. Multiomics analysis revealed that the antigen processing and presentation pathway was positively associated with treatment response and PFS. Higher TAPBP expression was predictive of better PFS (log-rank p = 0.003), and this prognostic significance was confirmed in an immunotherapy validation cohort. CONCLUSIONS Thus, COX inhibitors combined with PD-1 blockade may be effective and safe treatment options for patients with dMMR metastatic colorectal cancer, and TAPBP may serve as a biomarker for immune checkpoint inhibitor therapy (this study was registered at ClinicalTrials.gov: NCT03638297). FUNDING Funded by the National Natural Science Foundation of China (81974369) and the program of Guangdong Provincial Clinical Research Center for Digestive Diseases (2020B1111170004).
Collapse
Affiliation(s)
- Zehua Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuanzhe Zhang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi Cheng
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianxia Li
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Fangqian Li
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Lishuo Shi
- Clinical Research Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ge Qin
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weixiang Zhan
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yue Cai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaoyu Xie
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiayu Ling
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Huabin Hu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianwei Zhang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yanhong Deng
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| |
Collapse
|
2
|
Lerner A, Benzvi C, Vojdani A. HLA-DQ2/8 and COVID-19 in Celiac Disease: Boon or Bane. Microorganisms 2023; 11:2977. [PMID: 38138121 PMCID: PMC10745744 DOI: 10.3390/microorganisms11122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, epidemiological evidence suggests a low incidence of COVID-19-infected CD patients. The present study explores whether their genetic background, namely, the associated HLA-DQs, offers protection against severe COVID-19 outcomes. We hypothesize that the HLA-DQ2/8 alleles may shield CD patients from SARS-CoV-2 and its subsequent effects, possibly due to memory CD4 T cells primed by previous exposure to human-associated common cold coronaviruses (CCC) and higher affinity to those allele's groove. In this context, we examined potential cross-reactivity between SARS-CoV-2 epitopes and human-associated CCC and assessed the binding affinity (BA) of these epitopes to HLA-DQ2/8. Using computational methods, we analyzed sequence similarity between SARS-CoV-2 and four distinct CCC. Of 924 unique immunodominant 15-mer epitopes with at least 67% identity, 37 exhibited significant BA to HLA-DQ2/8, suggesting a protective effect. We present various mechanisms that might explain the protective role of HLA-DQ2/8 in COVID-19-afflicted CD patients. If substantiated, these insights could enhance our understanding of the gene-environment enigma and viral-host relationship, guiding potential therapeutic innovations against the ongoing SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Aaron Lerner
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat Gan 5262160, Israel;
- Research Department, Ariel University, Ariel 4077625, Israel
| | - Carina Benzvi
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat Gan 5262160, Israel;
| | | |
Collapse
|
3
|
van Hateren A, Elliott T. Visualising tapasin- and TAPBPR-assisted editing of major histocompatibility complex class-I immunopeptidomes. Curr Opin Immunol 2023; 83:102340. [PMID: 37245412 DOI: 10.1016/j.coi.2023.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023]
Abstract
Which peptides are selected for presentation by major histocompatibility complex class-I (MHC-I) molecules is a key determinant of successful immune responses. Peptide selection is co-ordinated by the tapasin and TAP Binding PRotein (TAPBPR) proteins, which ensure MHC-I molecules preferentially acquire high-affinity-binding peptides. New structural analyses have offered insight into how tapasin achieves this function within the peptide-loading complex (PLC) (comprising the Transporter associated with Antigen Presentation (TAP) peptide transporter, tapasin-ERp57, MHC-I and calreticulin), and how TAPBPR performs a peptide editing function independently of other molecules. The new structures reveal nuances in how tapasin and TAPBPR interact with MHC-I, and how calreticulin and ERp57 complement tapasin to exploit the plasticity of MHC-I molecules to achieve peptide editing.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Building 85, Southampton SO17 1BJ, UK
| | - Tim Elliott
- Centre for Immuno-oncology and CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|