1
|
Mei X, Yang Z, Wang X, Shi A, Blanchard J, Elahi F, Kang H, Orive G, Zhang YS. Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization. LAB ON A CHIP 2025. [PMID: 39775452 DOI: 10.1039/d4lc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ziyi Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Xiran Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92161, USA
| | - Alan Shi
- Brookline High School, Brookline, MA 02445, USA
| | - Joel Blanchard
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanny Elahi
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Zhu S, Liao X, Xu Y, Zhou N, Pan Y, Song J, Zheng T, Zhang L, Bai L, Wang Y, Zhou X, Gou M, Tao J, Liu R. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact Mater 2025; 43:392-405. [PMID: 39399841 PMCID: PMC11470575 DOI: 10.1016/j.bioactmat.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Digital light processing (DLP)-based bioprinting technology holds immense promise for the advancement of hydrogel constructs in biomedical applications. However, creating high-performance hydrogel constructs with this method is still a challenge, as it requires balancing the physicochemical properties of the matrix while also retaining the cellular activity of the encapsulated cells. Herein, we propose a facile and practical strategy for the 3D bioprinting of high-performance hydrogel constructs through the in-situ birth of stem cell spheroids. The strategy is achieved by loading the cell/dextran microdroplets within gelatin methacryloyl (GelMA) emulsion, where dextran functions as a decoy to capture and aggregate the cells for bioprinting while GelMA enables the mechanical support without losing the structural complexity and fidelity. Post-bioprinting, the leaching of dextran results in a smooth curved surface that promotes in-situ birth of spheroids within hydrogel constructs. This process significant enhances differentiation potential of encapsulated stem cells. As a proof-of-concept, we encapsulate dental pulp stem cells (DPSCs) within hydrogel constructs, showcasing their regenerative capabilities in dentin and neovascular-like structures in vivo. The strategy in our study enables high-performance hydrogel tissue construct fabrication with DLP-based bioprinting, which is anticipated to pave a promising way for diverse biomedical applications.
Collapse
Affiliation(s)
- Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xueyuan Liao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yue Xu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Nazi Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Taijing Zheng
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Lin Zhang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Liyun Bai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yu Wang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400042, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610065, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
3
|
Jiang J, Yuan C, Zhang X, Gu L, Yao Y, Wang X, He Y, Shao L. 3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412127. [PMID: 39385640 DOI: 10.1002/adma.202412127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks. As an example, the printing of positively charged 5% w/v gelatin methacryloyl (GelMA) in a liquid granular bath prepared with negatively charged κ-carrageenan is proved to be achievable. By LL3DBP, printing capacity is greatly advanced and bioinks with over 90% v/v cell can be printed, and printed structures with high-cell-proportion exhibit excellent bioactivity.
Collapse
Affiliation(s)
- Jinhong Jiang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chenhui Yuan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyu Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lin Gu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xueping Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lei Shao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
4
|
Deng X, Qi C, Meng S, Dong H, Wang T, Liu Z, Kong T. All-Aqueous Embedded 3D Printing for Freeform Fabrication of Biomimetic 3D Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406825. [PMID: 39520386 DOI: 10.1002/adma.202406825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
All-aqueous embedded 3D printing, which involves extruding inks in an aqueous bath, has emerged as a transformative platform for the freeform fabrication of 3D constructs with precise control. The use of a supporting bath not only enables the printing of arbitrarily designed 3D constructs but also broadens ink selection for various soft matters, advancing the wide application of this technology. This review focuses on recent progress in the freeform preparation of 3D constructs using all-aqueous embedded 3D printing. It begins by discussing the significance of ultralow interfacial tension in all-liquid embedded printing and highlights the fundamental concepts and properties of all-aqueous system. The review then introduces recent advances in all-aqueous embedded 3D printing and clarifies the key factors affecting printing stability and shape fidelity, aiming to guide expansion and assessment of emerging printing systems used for various representative applications. Furthermore, it proposes the potential scope and applications of this technology, including in vitro models, cytomimetic microreactors, and soft ionic electronics. Finally, the review discusses the challenges facing current all-aqueous embedded 3D printing and offers future perspectives on possible improvements and developments.
Collapse
Affiliation(s)
- Xiaokang Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Haifeng Dong
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, Guangdong, 516081, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| |
Collapse
|
5
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
6
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
7
|
Garciamendez-Mijares CE, Aguilar FJ, Hernandez P, Kuang X, Gonzalez M, Ortiz V, Riesgo RA, Ruiz DSR, Rivera VAM, Rodriguez JC, Mestre FL, Castillo PC, Perez A, Cruz LM, Lim KS, Zhang YS. Design considerations for digital light processing bioprinters. APPLIED PHYSICS REVIEWS 2024; 11:031314. [PMID: 39221036 PMCID: PMC11284760 DOI: 10.1063/5.0187558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs.
Collapse
Affiliation(s)
- Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Javier Aguilar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Pavel Hernandez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Mauricio Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Vanessa Ortiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Ricardo A. Riesgo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - David S. Rendon Ruiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Juan Carlos Rodriguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Lugo Mestre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Penelope Ceron Castillo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Abraham Perez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Lourdes Monserrat Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Khoon S. Lim
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
9
|
Simińska-Stanny J, Nicolas L, Chafai A, Jafari H, Hajiabbas M, Dodi G, Gardikiotis I, Delporte C, Nie L, Podstawczyk D, Shavandi A. Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing. Bioact Mater 2024; 36:168-184. [PMID: 38463551 PMCID: PMC10924180 DOI: 10.1016/j.bioactmat.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lise Nicolas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- European School of Materials Science and Engineering, University of Lorraine, Nancy, France
| | - Adam Chafai
- Université Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Maryam Hajiabbas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Christine Delporte
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
10
|
Jia J, Wang X, Lin X, Zhao Y. Engineered Microorganisms for Advancing Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313389. [PMID: 38485221 DOI: 10.1002/adma.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
11
|
Wu Y, Yang X, Gupta D, Alioglu MA, Qin M, Ozbolat V, Li Y, Ozbolat IT. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2313088. [PMID: 38952568 PMCID: PMC11216718 DOI: 10.1002/adfm.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 07/03/2024]
Abstract
Embedded bioprinting overcomes the barriers associated with the conventional extrusion-based bioprinting process as it enables the direct deposition of bioinks in 3D inside a support bath by providing in situ self-support for deposited bioinks during bioprinting to prevent their collapse and deformation. Embedded bioprinting improves the shape quality of bioprinted constructs made up of soft materials and low-viscosity bioinks, leading to a promising strategy for better anatomical mimicry of tissues or organs. Herein, the interplay mechanism among the printing process parameters toward improved shape quality is critically reviewed. The impact of material properties of the support bath and bioink, printing conditions, cross-linking mechanisms, and post-printing treatment methods, on the printing fidelity, stability, and resolution of the structures is meticulously dissected and thoroughly discussed. Further, the potential scope and applications of this technology in the fields of bioprinting and regenerative medicine are presented. Finally, outstanding challenges and opportunities of embedded bioprinting as well as its promise for fabricating functional solid organs in the future are discussed.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
- Ceyhan Engineering Faculty, Mechanical Engineering Department, Cukurova University, Adana 01330, Turkey
- Institute of Natural and Applied Sciences, Tissue Engineering Department, Cukurova University, Adana 01130, Turkey
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Song C, Wu X, Wang Y, Wang J, Zhao Y. Cuttlefish-Inspired Photo-Responsive Antibacterial Microparticles with Natural Melanin Nanoparticles Spray. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310444. [PMID: 38050927 DOI: 10.1002/smll.202310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Topical antibiotics can be utilized to treat periodontitis, while their delivery stratagems with controlled release and long-lasting bactericidal inhibition are yet challenging. Herein, inspired by the defensive behavior of cuttlefish expelling ink, this work develops innovative thermal-responsive melanin-integrated porous microparticles (MPs) through microfluidic synthesis for periodontitis treatment. These MPs are composed of melanin nanoparticles (NPs), poly(N-isopropylacrylamide) (PNIPAM), and agarose. Benefiting from the excellent biocompatibility and large surface area ratio of MPs, they can deliver abundant melanin NPs. Under near-infrared irradiation, the melanin NPs can convert photo energy into thermal energy. This leads to agarose melting and subsequent shrinkage of the microspheres induced by pNIPAM, thereby facilitating the release of melanin NPs. In addition, the released melanin NPs can serve as a highly effective photothermal agent, displaying potent antibacterial activity against porphyromonas gingivalis and possessing natural anti-inflammatory properties. These unique characteristics are further demonstrated through in vivo experiments, showing the antibacterial effects in the treatment of infected wounds and periodontitis. Therefore, the catfish-inspired photo-responsive antibacterial MPs with controlled-release drug delivery hold tremendous potential in clinical antibacterial applications.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Lai G, Meagher L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication 2024; 16:035005. [PMID: 38565131 DOI: 10.1088/1758-5090/ad39a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Extrusion-based bioprinting is a promising technology for the fabrication of complex three-dimensional (3D) tissue-engineered constructs. To further improve the printing accuracy and provide mechanical support during the printing process, hydrogel-based support bath materials have been developed. However, the gel structure of some support bath materials can be compromised when exposed to certain bioink crosslinking cues, hence their compatibility with bioinks can be limited. In this study, a xanthan gum-based composite support material compatible with multiple crosslinking mechanisms is developed. Different support bath materials can have different underlying polymeric structures, for example, particulate suspensions and polymer solution with varying supramolecular structure) and these properties are governed by a variety of different intermolecular interactions. However, common rheological behavior can be expected because they have similar demonstrated performance and functionality. To provide a detailed exploration/identification of the common rheological properties expressed by different support bath materials from a unified perspective, benchmark support bath materials from previous studies were prepared. A comparative rheological study revealed both the structural and shear behavior characteristics shared by support bath materials, including yield stress, gel complex moduli, shear-thinning behavior, and self-healing properties. Gel structural stability and functionality of support materials were tested in the presence of various crosslinking stimuli, confirming the versatility of the xanthan-based support material. We further investigated the effect of support materials and the diameter of extrusion needles on the printability of bioinks to demonstrate the improvement in bioink printability and structural integrity. Cytotoxicity and cell encapsulation viability tests were carried out to confirm the cell compatibility of the xanthan gum-based support bath material. We propose and demonstrate the versatility and compatibility of the novel support bath material and provide detailed new insight into the essential properties and behavior of these materials that serve as a guide for further development of support bath-based 3D bioprinting.
Collapse
Affiliation(s)
- Guanyu Lai
- Department of Materials Science and Engineering, Monash University, Clayton, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Yu Y, Pan Y, Shen Y, Tian J, Zhang R, Guo W, Li C, Shum HC. Vascular network-inspired fluidic system (VasFluidics) with spatially functionalizable membranous walls. Nat Commun 2024; 15:1437. [PMID: 38365901 PMCID: PMC10873510 DOI: 10.1038/s41467-024-45781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
In vascular networks, the transport across different vessel walls regulates chemical compositions in blood over space and time. Replicating such trans-wall transport with spatial heterogeneity can empower synthetic fluidic systems to program fluid compositions spatiotemporally. However, it remains challenging as existing synthetic channel walls are typically impermeable or composed of homogeneous materials without functional heterogeneity. This work presents a vascular network-inspired fluidic system (VasFluidics), which is functionalizable for spatially different trans-wall transport. Facilitated by embedded three-dimensional (3D) printing, elastic, ultrathin, and semipermeable walls self-assemble electrostatically. Physicochemical reactions between fluids and walls are localized to vary the trans-wall molecules among separate regions, for instance, by confining solutions or locally immobilizing enzymes on the outside of channels. Therefore, fluid compositions can be regulated spatiotemporally, for example, to mimic blood changes during glucose absorption and metabolism. Our VasFluidics expands opportunities to replicate biofluid processing in nature, providing an alternative to traditional fluidics.
Collapse
Affiliation(s)
- Yafeng Yu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yanting Shen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
16
|
Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater 2024; 32:356-384. [PMID: 37920828 PMCID: PMC10618244 DOI: 10.1016/j.bioactmat.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Three-dimensional bioprinting is an advanced tissue fabrication technique that allows printing complex structures with precise positioning of multiple cell types layer-by-layer. Compared to other bioprinting methods, extrusion bioprinting has several advantages to print large-sized tissue constructs and complex organ models due to large build volume. Extrusion bioprinting using sacrificial, support and embedded strategies have been successfully employed to facilitate printing of complex and hollow structures. Embedded bioprinting is a gel-in-gel approach developed to overcome the gravitational and overhanging limits of bioprinting to print large-sized constructs with a micron-scale resolution. In embedded bioprinting, deposition of bioinks into the microgel or granular support bath will be facilitated by the sol-gel transition of the support bath through needle movement inside the granular medium. This review outlines various embedded bioprinting strategies and the polymers used in the embedded systems with advantages, limitations, and efficacy in the fabrication of complex vascularized tissues or organ models with micron-scale resolution. Further, the essential requirements of support bath systems like viscoelasticity, stability, transparency and easy extraction to print human scale organs are discussed. Additionally, the organs or complex geometries like vascular constructs, heart, bone, octopus and jellyfish models printed using support bath assisted printing methods with their anatomical features are elaborated. Finally, the challenges in clinical translation and the future scope of these embedded bioprinting models to replace the native organs are envisaged.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
17
|
Abstract
Bioprinting, as a groundbreaking technology, enables the fabrication of biomimetic tissues and organs with highly complex structures, multiple cell types, mechanical heterogeneity, and diverse functional gradients. With the growing demand for organ transplantation and the limited number of organ donors, bioprinting holds great promise for addressing the organ shortage by manufacturing completely functional organs. While the bioprinting of complete organs remains a distant goal, there has been considerable progress in the development of bioprinted transplantable tissues and organs for regenerative medicine. This review article recapitulates the current achievements of organ 3D bioprinting, primarily encompassing five important organs in the human body (i.e., the heart, kidneys, liver, pancreas, and lungs). Challenges from cellular techniques, biomanufacturing technologies, and organ maturation techniques are also deliberated for the broad application of organ bioprinting. In addition, the integration of bioprinting with other cutting-edge technologies including machine learning, organoids, and microfluidics is envisioned, which strives to offer the reader the prospect of bioprinting in constructing functional organs.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Xie ZT, Zeng J, Kang DH, Saito S, Miyagawa S, Sawa Y, Matsusaki M. 3D Printing of Collagen Scaffold with Enhanced Resolution in a Citrate-Modulated Gellan Gum Microgel Bath. Adv Healthc Mater 2023; 12:e2301090. [PMID: 37143444 DOI: 10.1002/adhm.202301090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Indexed: 05/06/2023]
Abstract
3D printing in a microgel-based supporting bath enables the construction of complex structures with soft and watery biomaterials but the low print resolution is usually an obstacle to its practical application in tissue engineering. Herein, high-resolution printing of a 3D collagen organ scaffold is realized by using an engineered Gellan gum (GG) microgel bath containing trisodium citrate (TSC). The introduction of TSC into the bath system not only mitigates the aggregation of GG microgels, leading to a more homogeneous bath morphology but also suppresses the diffusion of the collagen ink in the bath due to the dehydration effect of TSC, both of which contribute to the improvement of print resolution. 3D collagen organ structures such as hand, ear, and heart are successfully constructed with high shape fidelity in the developed bath. After printing, the GG and TSC can be easily removed by washing with water, and the obtained collagen product exhibits good cell affinity in a tissue scaffold application. This work offers an easy-to-operate strategy for developing a microgel bath for high-resolution printing of collagen, providing an alternative path to in vitro 3D organ construction.
Collapse
Affiliation(s)
- Zheng-Tian Xie
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jinfeng Zeng
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dong-Hee Kang
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|