1
|
Martin HR, Lysakowski A, Eatock RA. The potassium channel subunit K V1.8 ( Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. eLife 2024; 13:RP94342. [PMID: 39625061 PMCID: PMC11614384 DOI: 10.7554/elife.94342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.
Collapse
Affiliation(s)
- Hannah R Martin
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of ChicagoChicagoUnited States
| |
Collapse
|
2
|
Heimburg T. The mechanical properties of nerves, the size of the action potential, and consequences for the brain. Chem Phys Lipids 2024; 267:105461. [PMID: 39622430 DOI: 10.1016/j.chemphyslip.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
The action potential is widely regarded as a purely electrical phenomenon. However, one also finds mechanical and thermal changes that can be observed experimentally. In particular, nerve membranes become thicker and axons contract. The spatial length of the action potential can be quite large, ranging from millimeters to many centimeters. This suggests the use of macroscopic thermodynamics methods to understand its properties. The pulse length is several orders of magnitude larger than the synaptic gap, larger than the distance of the nodes of Ranvier and even larger than the size of many neurons such as pyramidal cells or brain stem motor neurons. Here, we review the mechanical changes in nerves, we discuss theoretical possibilities to explain them and implications of a mechanical nerve pulse for neurons and for the brain. In particular, the contraction of nerves leads to the possibility of fast mechanical synapses.
Collapse
Affiliation(s)
- Thomas Heimburg
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Regalado Núñez K, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. Front Neurol 2024; 15:1441964. [PMID: 39655160 PMCID: PMC11625666 DOI: 10.3389/fneur.2024.1441964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. Methods To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined vestibular function and the maturation of the vestibular epithelium and ganglion neurons by immunohistochemistry and patch-clamp electrophysiology in Vglut3-ko mice whose hair cell synapses lack glutamate. Results The knockout mice showed no obvious balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wild-type animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wild-type controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Discussion Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
Affiliation(s)
- Katherine Regalado Núñez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel Bronson
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. J Physiol 2024. [PMID: 39373584 DOI: 10.1113/jp286263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa mutants have impaired ribbon-synapse and sensory-system function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, Maryland, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David S Lee
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Contini D, Holstein GR, Art JJ. Simultaneous recordings from vestibular Type I hair cells and their calyceal afferents in mice. Front Neurol 2024; 15:1434026. [PMID: 39263277 PMCID: PMC11387672 DOI: 10.3389/fneur.2024.1434026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024] Open
Abstract
The vestibular hair cell receptors of anamniotes, designated Type II, are presynaptic to bouton endings of vestibular nerve distal neurites. An additional flask-shaped hair cell receptor, Type I, is present in amniotes, and communicates with a chalice-shaped afferent neuritic ending that surrounds the entire hair cell except its apical neck. Since the full repertoire of afferent fiber dynamics and sensitivities observed throughout the vertebrate phyla can be accomplished through Type II hair cell-bouton synapses, the functional contribution(s) of Type I hair cells and their calyces to vestibular performance remains a topic of great interest. The goal of the present study was to investigate electrical coupling between the Type I hair cell and its enveloping calyx in the mouse semicircular canal crista ampullaris. Since there are no gap junctions between these two cells, evidence for electrical communication would necessarily involve other mechanisms. Simultaneous recordings from the two cells of the synaptic pair were used initially to verify the presence of orthodromic quantal synaptic transmission from the hair cell to the calyx, and then to demonstrate bi-directional communication due to the slow accumulation of potassium ions in the synaptic cleft. As a result of this potassium ion accretion, the equilibrium potentials of hair cell conductances facing the synaptic cleft become depolarized to an extent that is adequate for calcium influx into the hair cell, and the calyx inner face becomes depolarized to a level that is near the threshold for spike initiation. Following this, paired recordings were again employed to characterize fast bi-directional electrical coupling between the two cells. In this form of signaling, cleft-facing conductances in both the hair cell and calyx increase, which strengthens their coupling. Because this mechanism relies on the cleft resistance, we refer to it as resistive coupling. We conclude that the same three forms of hair cell-calyceal transmission previously demonstrated in the turtle are present in the mammalian periphery, providing a biophysical basis for the exceptional temporal fidelity of the vestibular system.
Collapse
Affiliation(s)
- Donatella Contini
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan J Art
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Martin HR, Lysakowski A, Eatock RA. The potassium channel subunit K V1.8 ( Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.563853. [PMID: 38045305 PMCID: PMC10690164 DOI: 10.1101/2023.11.21.563853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (KCNA10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular hair cells of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (KCNQ) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.
Collapse
Affiliation(s)
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology
| | | |
Collapse
|
7
|
Mohamed NMM, Meredith FL, Rennie KJ. Inhibition of Ionic Currents by Fluoxetine in Vestibular Calyces in Different Epithelial Loci. Int J Mol Sci 2024; 25:8801. [PMID: 39201487 PMCID: PMC11354711 DOI: 10.3390/ijms25168801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 μM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 μM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 μM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.
Collapse
Affiliation(s)
| | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.M.M.M.); (F.L.M.)
| |
Collapse
|
8
|
Lipovsek M. Comparative biology of the amniote vestibular utricle. Hear Res 2024; 448:109035. [PMID: 38763033 DOI: 10.1016/j.heares.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
9
|
Núñez KR, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.597464. [PMID: 38915604 PMCID: PMC11195208 DOI: 10.1101/2024.06.12.597464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined the maturation of the vestibular epithelium and ganglion neurons in Vglut3-ko mice whose hair cell synapses lack glutamate. Despite lacking glutamatergic input, the knockout mice showed no notable balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wildtype animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wildtype controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
|
10
|
Borrajo M, Sedano D, Palou A, Giménez-Esbrí V, Barrallo-Gimeno A, Llorens J. Maturation of type I and type II rat vestibular hair cells in vivo and in vitro. Front Cell Dev Biol 2024; 12:1404894. [PMID: 38895157 PMCID: PMC11183282 DOI: 10.3389/fcell.2024.1404894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Vestibular sensory epithelia contain type I and type II sensory hair cells (HCI and HCII). Recent studies have revealed molecular markers for the identification of these cells, but the precise composition of each vestibular epithelium (saccule, utricle, lateral crista, anterior crista, posterior crista) and their postnatal maturation have not been described in detail. Moreover, in vitro methods to study this maturation are not well developed. We obtained total HCI and HCII counts in adult rats and studied the maturation of the epithelia from birth (P0) to postnatal day 28 (P28). Adult vestibular epithelia hair cells were found to comprise ∼65% HCI expressing osteopontin and PMCA2, ∼30% HCII expressing calretinin, and ∼4% HCII expressing SOX2 but neither osteopontin nor calretinin. At birth, immature HCs express both osteopontin and calretinin. P28 epithelia showed an almost adult-like composition but still contained 1.3% of immature HCs. In addition, we obtained free-floating 3D cultures of the epithelia at P1, which formed a fluid-filled cyst, and studied their survival and maturation in vitro up to day 28 (28 DIV). These cultures showed good HC resiliency and maturation. Using an enriched medium for the initial 4 days, a HCI/calretinin+-HCII ratio close to the in vivo ratio was obtained. These cultures are suitable to study HC maturation and mature HCs in pharmacological, toxicological and molecular research.
Collapse
Affiliation(s)
- Mireia Borrajo
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - David Sedano
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Víctor Giménez-Esbrí
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.
Collapse
Affiliation(s)
- Christophe Lopez
- Aix Marseille Univ, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University
- Department of Neuroscience, Johns Hopkins University
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| |
Collapse
|
12
|
Sinha AK, Lee C, Holt JC. KCNQ2/3 regulates efferent mediated slow excitation of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573731. [PMID: 38260489 PMCID: PMC10802244 DOI: 10.1101/2023.12.30.573731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary vestibular afferents transmit information from hair cells about head position and movement to the CNS, which is critical for maintaining balance, gaze stability and spatial navigation. The CNS, in turn, modulates hair cells and afferents via the efferent vestibular system (EVS) and its activation of several cholinergic signaling mechanisms. Electrical stimulation of EVS neurons gives rise to three kinetically- and mechanistically-distinct afferent responses including a slow excitation, a fast excitation, and a fast inhibition. EVS-mediated slow excitation is attributed to odd-numbered muscarinic acetylcholine receptors (mAChRs) on the afferent whose activation leads to the closure of a potassium conductance and increased afferent discharge. Likely effector candidates include low-threshold, voltage-gated potassium channels belonging to the KCNQ (Kv7.X) family, which are involved in neuronal excitability across the nervous system and are subject to mAChR modulation. Specifically, KCNQ2/3 heteromeric channels may be the molecular correlates for the M-current, a potassium current that is blocked following the activation of odd-numbered mAChRs. To this end, multiple members of the KCNQ channel family, including KCNQ2 and KCNQ3, are localized to several microdomains within vestibular afferent endings, where they influence afferent excitability and could be targeted by EVS neurons. Additionally, the relative expression of KCNQ subunits appears to vary across the sensory epithelia and among different afferent types. However, it is unclear which KCNQ channel subunits are targeted by mAChR activation and whether that also varies among different afferent classes. Here we show that EVS-mediated slow excitation is blocked and enhanced by the non-selective KCNQ channel blocker XE991 and opener retigabine, respectively. Using KCNQ subunit-selective drugs, we observed that a KCNQ2 blocker blocks the slow response in irregular afferents, while a KCNQ2/3 opener enhances slow responses in regular afferents. The KCNQ2 blockers did not appear to affect resting afferent discharge rates, while KCNQ2/3 or KCNQ2/4 openers decreased afferent excitability. Here, we show pharmacological evidence that KCNQ2/3 subunits are likely targeted by mAChR activation in mammalian vestibular afferents. Additionally, we show that KCNQ3 KO mice have altered resting discharge rate as well as EVS-mediated slow response. These data together suggest that KCNQ channels play a role in slow response and discharge rate of vestibular afferents, which can be modulated by EVS in mammals.
Collapse
|
13
|
Pastras CJ, Curthoys IS. Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli. Audiol Res 2023; 13:910-928. [PMID: 37987337 PMCID: PMC10660708 DOI: 10.3390/audiolres13060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Both auditory and vestibular primary afferent neurons can be activated by sound and vibration. This review relates the differences between them to the different receptor/synaptic mechanisms of the two systems, as shown by indicators of peripheral function-cochlear and vestibular compound action potentials (cCAPs and vCAPs)-to click stimulation as recorded in animal studies. Sound- and vibration-sensitive type 1 receptors at the striola of the utricular macula are enveloped by the unique calyx afferent ending, which has three modes of synaptic transmission. Glutamate is the transmitter for both cochlear and vestibular primary afferents; however, blocking glutamate transmission has very little effect on vCAPs but greatly reduces cCAPs. We suggest that the ultrafast non-quantal synaptic mechanism called resistive coupling is the cause of the short latency vestibular afferent responses and related results-failure of transmitter blockade, masking, and temporal precision. This "ultrafast" non-quantal transmission is effectively electrical coupling that is dependent on the membrane potentials of the calyx and the type 1 receptor. The major clinical implication is that decreasing stimulus rise time increases vCAP response, corresponding to the increased VEMP response in human subjects. Short rise times are optimal in human clinical VEMP testing, whereas long rise times are mandatory for audiometric threshold testing.
Collapse
Affiliation(s)
- Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Pastras CJ, Curthoys IS, Asadnia M, McAlpine D, Rabbitt RD, Brown DJ. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation. J Neurosci 2023; 43:7149-7157. [PMID: 37775302 PMCID: PMC10601366 DOI: 10.1523/jneurosci.1417-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.
Collapse
Affiliation(s)
- Christopher J Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ian S Curthoys
- School of Psychology, Vestibular Research Laboratory, The University of Sydney, Sydney, New South Wales 2050, Australia
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohsen Asadnia
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David McAlpine
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Richard D Rabbitt
- Departments of Biomedical Engineering, Otolaryngology, and Neuroscience Program, University of Utah, Salt Lake City, Utah 84112
| | - Daniel J Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
15
|
Meredith FL, Vu TA, Gehrke B, Benke TA, Dondzillo A, Rennie KJ. Expression of hyperpolarization-activated current ( Ih) in zonally defined vestibular calyx terminals of the crista. J Neurophysiol 2023; 129:1468-1481. [PMID: 37198134 PMCID: PMC10259860 DOI: 10.1152/jn.00135.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Tiffany A Vu
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandon Gehrke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
16
|
Pastras CJ, Gholami N, Jennings S, Zhu H, Zhou W, Brown DJ, Curthoys IS, Rabbitt RD. A mathematical model for mechanical activation and compound action potential generation by the utricle in response to sound and vibration. Front Neurol 2023; 14:1109506. [PMID: 37051057 PMCID: PMC10083375 DOI: 10.3389/fneur.2023.1109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction Calyx bearing vestibular afferent neurons innervating type I hair cells in the striolar region of the utricle are exquisitely sensitive to auditory-frequency air conducted sound (ACS) and bone conducted vibration (BCV). Here, we present experimental data and a mathematical model of utricular mechanics and vestibular compound action potential generation (vCAP) in response to clinically relevant levels of ACS and BCV. Vibration of the otoconial layer relative to the sensory epithelium was simulated using a Newtonian two-degree-of-freedom spring-mass-damper system, action potential timing was simulated using an empirical model, and vCAPs were simulated by convolving responses of the population of sensitive neurons with an empirical extracellular voltage kernel. The model was validated by comparison to macular vibration and vCAPs recorded in the guinea pig, in vivo. Results Transient stimuli evoked short-latency vCAPs that scaled in magnitude and timing with hair bundle mechanical shear rate for both ACS and BCV. For pulse BCV stimuli with durations <0.8 ms, the vCAP magnitude increased in proportion to temporal bone acceleration, but for pulse durations >0.9 ms the magnitude increased in proportion to temporal bone jerk. Once validated using ACS and BCV data, the model was applied to predict blast-induced hair bundle shear, with results predicting acute mechanical damage to bundles immediately upon exposure. Discussion Results demonstrate the switch from linear acceleration to linear jerk as the adequate stimulus arises entirely from mechanical factors controlling the dynamics of sensory hair bundle deflection. The model describes the switch in terms of the mechanical natural frequencies of vibration, which vary between species based on morphology and mechanical factors.
Collapse
Affiliation(s)
- Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nastaran Gholami
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Skyler Jennings
- Communication Sciences and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| | - Hong Zhu
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel J. Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard D. Rabbitt
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Otolaryngology and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Bronson D, Kalluri R. Muscarinic Acetylcholine Receptors Modulate HCN Channel Properties in Vestibular Ganglion Neurons. J Neurosci 2023; 43:902-917. [PMID: 36604171 PMCID: PMC9908319 DOI: 10.1523/jneurosci.2552-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V 1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V 1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity.
Collapse
Affiliation(s)
- Daniel Bronson
- Hearing and Communications Neuroscience Training Program, University of Southern California, Los Angeles, California 90057
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
| | - Radha Kalluri
- Hearing and Communications Neuroscience Training Program, University of Southern California, Los Angeles, California 90057
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
| |
Collapse
|