1
|
Zhou Z, Wang C, Cha X, Zhou T, Pang X, Zhao F, Han X, Yang G, Wei G, Ren C. The biogeography of soil microbiome potential growth rates. Nat Commun 2024; 15:9472. [PMID: 39488524 PMCID: PMC11531530 DOI: 10.1038/s41467-024-53753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Soil microbial growth, a vital biogeochemical process, governs both the accrual and loss of soil carbon. Here, we investigate the biogeography of soil microbiome potential growth rates and show that microbiomes in resource-rich (high organic matter and nutrients) and acid-neutral soils from cold and humid regions exhibit high potential growth. Conversely, in resource-poor, dry, hot, and hypersaline soils, soil microbiomes display lower potential growth rates, suggesting trade-offs between growth and resource acquisition or stress tolerance. In addition, the potential growth rates of soil microbiomes positively correlates with genome size and the number of ribosomal RNA operons but negatively correlates with optimum temperature, biomass carbon-to-phosphorus and nitrogen-to-phosphorus ratios. The spatial variation of microbial potential growth rates aligns with several macroecological theories. These findings not only enhance our understanding of microbial adaptation to diverse environments but also aid in realistically parameterizing microbial physiology in soil carbon cycling models.
Collapse
Affiliation(s)
- Zhenghu Zhou
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chuankuan Wang
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinyu Cha
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Zhou
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuesen Pang
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education Northeast Forestry University, Harbin, Heilongjiang, China
| | - Fazhu Zhao
- College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Lu G, Feng Z, Xu Y, Guan F, Jin Y, Zhang G, Hu J, Yu T, Wang M, Liu M, Yang H, Li W, Liang Z. Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure. PLANTS (BASEL, SWITZERLAND) 2024; 13:2818. [PMID: 39409688 PMCID: PMC11479165 DOI: 10.3390/plants13192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024]
Abstract
The improvement of saline-alkali land plays a key role in ensuring food security and promoting agricultural development. Saline soils modifies the response of the soil microbial community, but research is still limited. The effects of applying phosphogypsum with rice cultivation (PRC) on soil physicochemical properties and bacterial community in soda saline-alkali paddy fields in Songnen Plain, China were studied. The results showed that the PRC significantly improved the physicochemical properties of soil, significantly reduced the salinity, increased the utilization efficiency of carbon, nitrogen, and phosphorus, and significantly increased the activities of urease and phosphatase. The activities of urease and phosphatase were significantly correlated with the contents of total organic carbon and total carbon. A redundancy analysis showed that pH, AP, ESP, HCO3-, and Na+ were dominant factors in determining the bacterial community structure. The results showed that PRC could improve soil quality and enhance the ecosystem functionality of soda saline-alkali paddy fields by increasing nutrient content, stimulating soil enzyme activity, and regulating bacterial community improvement. After many years of PRC, the soda-alkali soil paddy field still develops continuously and healthily, which will provide a new idea for sustainable land use management and agricultural development.
Collapse
Affiliation(s)
- Guanru Lu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Feng
- College of Life Science, Baicheng Normal University, Baicheng 137000, China;
| | - Yang Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yangyang Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Guohui Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
| | - Jiafeng Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Tianhe Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Mingming Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Miao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Haoyu Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Zhengwei Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (G.L.); (Y.X.); (Y.J.); (G.Z.); (J.H.); (T.Y.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Agro-Ecosystem National Observation and Research Station, Da’an 131317, China
| |
Collapse
|
3
|
Cui Y, Hu J, Peng S, Delgado-Baquerizo M, Moorhead DL, Sinsabaugh RL, Xu X, Geyer KM, Fang L, Smith P, Peñuelas J, Kuzyakov Y, Chen J. Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308176. [PMID: 39024521 PMCID: PMC11425281 DOI: 10.1002/advs.202308176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Collapse
Affiliation(s)
- Yongxing Cui
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Department of Agroecology, Aarhus University, Tjele, 8830, Denmark
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Junxi Hu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, E-41012, Spain
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Kevin M Geyer
- Department of Biology, Young Harris College, Young Harris, GA, 30582, USA
| | - Linchuan Fang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St. Machar Drive, Aberdeen, AB24 3UU, UK
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08913, Spain
- CREAF, 08913 Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, 8830, Denmark
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- Institute of Global Environmental Change, Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| |
Collapse
|
4
|
Yang X, Zhang S, Wu D, Huang Y, Zhang L, Liu K, Wu H, Guo S, Zhang W. Recalcitrant components accumulation in dissolved organic matter decreases microbial metabolic quotient of red soil under long-term manuring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173287. [PMID: 38776786 DOI: 10.1016/j.scitotenv.2024.173287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Microbial metabolism is closely related to soil carbon dioxide emissions, which in turn is related to environmental issues such as global warming. Dissolved organic matter (DOM) affects many fundamental biogeochemical processes such as microbial metabolism involved in soil carbon cycle, not only directly by its availability, but also indirectly by its chemodiversity. However, the association between the DOM chemodiversity and bioavailability remains unclear. To address this knowledge gap, soils from two agro-ecological experimental sites subjected to various long-term fertilizations in subtropical area was collected. The chemodiversity of DOM was detected by multi-spectroscopic techniques including ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy and excitation emission matrices fluorescence spectroscopy. Results showed that long-term manure amendments significantly decreased microbial metabolic quotient (qCO2) by up to 57%. We also observed that long-term manure amendments significantly increased recalcitrant components of DOM (indicated by the aromaticity, humification index, the ratio of aromatic carbon to aliphatic carbon, and the relative abundances of humic-like components) and decreased labile components of DOM. Negatively correlation between the qCO2 and the proportion of recalcitrant components of DOM supported that accumulation in recalcitrant components of DOM increased microbial carbon utilization efficiency. Random forest models also showed the highest contribution of the relative abundances of humic-like components and the aromaticity of DOM in affecting qCO2. Both of the redundancy analysis and structural equation modeling further indicated the decisive role of soil pH in influencing the DOM chemodiversity. Soil pH explained 56.7% of the variation in the chemodiversity of DOM. The accumulation of recalcitrant components in DOM with increasing soil pH might be attributed to the accelerated microbial consumption of bioavailability components and/or to the negative impact on the solubility of bioavailability components. Overall, this research highlights the significance of long-term manure amendments in regulating qCO2 by altering the chemodiversity of soil DOM.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Dong Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yaping Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hengyang Red Soil Experimental Station of Chinese Academy of Agricultural Sciences/Qiyang Farmland Ecosystem National Observation and Research Station, Qiyang, Hunan 426182, China
| | - Kailou Liu
- Jiangxi Institute of Red Soil and Germplasm Resources, Jinxian, Jiangxi 331717, China
| | - Huiqiao Wu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shengli Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
5
|
Liu S, Xia S, Zhang X, Cai X, Yang J, Hu Y, Zhou S, Wang H. Microbial communities exhibit distinct diversities and assembly mechanisms in rainwater and tap-water storage systems. WATER RESEARCH 2024; 253:121305. [PMID: 38367380 DOI: 10.1016/j.watres.2024.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Roof-harvested rainwater stored for potable and nonpotable usages represent a clean and sustainable water supply resource. However, the microbial dynamics and mechanisms of community assembly in long-termed operated rainwater storage systems remain elusive. In this study, characteristics of microbial communities in different habitats were systematically compared within rainwater and tap-water simulated storage systems (SWSSs) constructed with different tank materials (PVC, stainless steel and cement). Distinct microbial communities were observed between rainwater and tap-water SWSSs for both water and biofilm samples (ANOSIM, p < 0.05), with lower diversity indexes noted in rainwater samples. Notably, a divergent potential pathogen profile was observed between rainwater and tap-water SWSSs, with higher relative abundances of potential pathogens noted in rainwater SWSSs. Moreover, tank materials had a notable impact on microbial communities in rainwater SWSSs (ANOSIM, p < 0.05), rather than tap-water SWSSs, illustrating the distinct interplay between water chemistry and engineering factors in shaping the SWSS microbiomes. Deterministic processes contributed predominantly to the microbial community assembly in cement rainwater SWSSs and all tap-water SWSSs, which might be ascribed to the high pH levels in cement rainwater SWSSs and low-nutrient levels in all tap-water SWSSs, respectively. However, microbial communities in the PVC and stainless-steel rainwater SWSSs were mainly driven by stochastic processes. Overall, the results provided insights to the distinct microbial assembly mechanisms and potential health risks in stored roof-harvested rainwater, highlighting the importance of developing tailored microbial management strategies for the storage and utilization of rainwater.
Collapse
Affiliation(s)
- Sihang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xucheng Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinhao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Song R, Zhu WZ, Li H, Wang H. Impact of wine-grape continuous cropping on soil enzyme activity and the composition and function of the soil microbial community in arid areas. Front Microbiol 2024; 15:1348259. [PMID: 38414771 PMCID: PMC10896694 DOI: 10.3389/fmicb.2024.1348259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Continuous cropping affected the stability of soil enzyme activity and the structural characteristics of microbial community. Owing to challenges in the study of complex rhizosphere microbial communities, the composition and function of these microbial communities in farmland ecosystems remain elusive. Here, we studied the microbial communities of the rhizosphere of wine grapes with different years of continuous cropping and investigated their relationships with soil enzyme activity. Methods Metagenomic sequencing was conducted on the rhizosphere soils from one uncultivated wasteland and four vineyards with varying durations of continuous cropping. Results The predominant microbial were bacteria (98.39%), followed by archaea (1.15%) and eukaryotes (0.45%). Continuous cropping caused a significant increase in the relative abundance of Rhizobiales and Micrococcales but a marked decrease in Solirubrobacterales. At the genus level, 75, 88, 65, 132, and 128 microbial genera were unique to uncultivated wasteland, 5, 10, 15, and 20 years of continuous cropping, respectively. The relative abundance of genes with signal transduction function was the highest. The activity of all enzymes measured in this study peaked at 5 years of continuous cropping, and then decreased with 10 to 15 year of continuous cropping, but increased at 20 years again. In addition, soil enzyme activity, especially of alkaline phosphatase was significantly correlated with the diversity of the dominant microorganisms at the genus level. Moreover, the coupled enzyme activities had a greater impact on the diversity of the microbial community than that of individual enzymes. Conclusion Our findings reveal the composition and function of the soil microbial communities and enzymes activity in response to changes in cropping years, which has important implications for overcoming continuous cropping obstacles and optimizing land use.
Collapse
Affiliation(s)
- Rui Song
- College of Enology, Northwest A&F University, Yangling, Shanxi, China
| | - Wen Zong Zhu
- College of Enology, Northwest A&F University, Yangling, Shanxi, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shanxi, China
- China Wine Industry Technology Institute, Yinchuan, Ningxia, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
7
|
Abstract
Understanding the effects of plastic pollution in terrestrial ecosystems is a priority in environmental research. A central aspect of this suite of pollutants is that it entails particles, in addition to chemical compounds, and this makes plastic quite different from the vast majority of chemical environmental pollutants. Particles can be habitats for microbial communities, and plastics can be a source of chemical compounds that are released into the surrounding environment. In the aquatic literature, the term 'plastisphere' has been coined to refer to the microbial community colonizing plastic debris; here, we use a definition that also includes the immediate soil environment of these particles to align the definition with other concepts in soil microbiology. First, we highlight major differences in the plastisphere between aquatic and soil ecosystems, then we review what is currently known about the soil plastisphere, including the members of the microbial community that are enriched, and the possible mechanisms underpinning this selection. Then, we focus on outlining future prospects for research on the soil plastisphere.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
8
|
Gao AX, Chen C, Gao ZY, Zhai ZQ, Wang P, Zhang SY, Zhao FJ. Soil redox status governs within-field spatial variation in microbial arsenic methylation and rice straighthead disease. THE ISME JOURNAL 2024; 18:wrae057. [PMID: 38564256 PMCID: PMC11031232 DOI: 10.1093/ismejo/wrae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Microbial arsenic (As) methylation in paddy soil produces mainly dimethylarsenate (DMA), which can cause physiological straighthead disease in rice. The disease is often highly patchy in the field, but the reasons remain unknown. We investigated within-field spatial variations in straighthead disease severity, As species in rice husks and in soil porewater, microbial composition and abundance of arsM gene encoding arsenite S-adenosylmethionine methyltransferase in two paddy fields. The spatial pattern of disease severity matched those of soil redox potential, arsM gene abundance, porewater DMA concentration, and husk DMA concentration in both fields. Structural equation modelling identified soil redox potential as the key factor affecting arsM gene abundance, consequently impacting porewater DMA and husk DMA concentrations. Core amplicon variants that correlated positively with husk DMA concentration belonged mainly to the phyla of Chloroflexi, Bacillota, Acidobacteriota, Actinobacteriota, and Myxococcota. Meta-omics analyses of soil samples from the disease and non-disease patches identified 5129 arsM gene sequences, with 71% being transcribed. The arsM-carrying hosts were diverse and dominated by anaerobic bacteria. Between 96 and 115 arsM sequences were significantly more expressed in the soil samples from the disease than from the non-disease patch, which were distributed across 18 phyla, especially Acidobacteriota, Bacteroidota, Verrucomicrobiota, Chloroflexota, Pseudomonadota, and Actinomycetota. This study demonstrates that even a small variation in soil redox potential within the anoxic range can cause a large variation in the abundance of As-methylating microorganisms, thus resulting in within-field variation in rice straighthead disease. Raising soil redox potential could be an effective way to prevent straighthead disease.
Collapse
Affiliation(s)
- A-Xiang Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Center of Agricultural Health, Academy for Advanced Interdisciplinary, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, NO. 1 Weigang, Xuanwu district, Nanjing 210095, China
| | - Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Center of Agricultural Health, Academy for Advanced Interdisciplinary, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, NO. 1 Weigang, Xuanwu district, Nanjing 210095, China
| | - Zi-Yu Gao
- School of Ecological and Environmental Sciences, East China Normal University, NO. 500 Dongchuan Street, Minghang, Shanghai 200241, China
| | - Zhi-Qiang Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Center of Agricultural Health, Academy for Advanced Interdisciplinary, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, NO. 1 Weigang, Xuanwu district, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Center of Agricultural Health, Academy for Advanced Interdisciplinary, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, NO. 1 Weigang, Xuanwu district, Nanjing 210095, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, NO. 500 Dongchuan Street, Minghang, Shanghai 200241, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Center of Agricultural Health, Academy for Advanced Interdisciplinary, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, NO. 1 Weigang, Xuanwu district, Nanjing 210095, China
| |
Collapse
|
9
|
Wang C, Yu QY, Ji NN, Zheng Y, Taylor JW, Guo LD, Gao C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nat Commun 2023; 14:7437. [PMID: 37978289 PMCID: PMC10656551 DOI: 10.1038/s41467-023-43297-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial gene repertoires reflect adaptive strategies, contribute to ecosystem functioning and are limited by genome size. However, gene functional diversity does not necessarily correlate with taxonomic diversity because average genome size may vary by community. Here, we analyse gene functional diversity (by shotgun metagenomics) and taxonomic diversity (by 16S rRNA gene amplicon sequencing) to investigate soil bacterial communities along a natural pH gradient in 12 tropical, subtropical, and temperate forests. We find that bacterial average genome size and gene functional diversity decrease, whereas taxonomic diversity increases, as soil pH rises from acid to neutral; as a result, bacterial taxonomic and functional diversity are negatively correlated. The gene repertoire of acid-adapted oligotrophs is enriched in functions of signal transduction, cell motility, secretion system, and degradation of complex compounds, while that of neutral pH-adapted copiotrophs is enriched in functions of energy metabolism and membrane transport. Our results indicate that a mismatch between taxonomic and functional diversity can arise when environmental factors (such as pH) select for adaptive strategies that affect genome size distributions.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Geographical Sciences, Fujian Normal University, 350007, Fuzhou, China
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
10
|
Luan L, Dini-Andreote F, Sun B, Jiang Y. Modeling soil bacterial diversity: challenges and opportunities. Trends Microbiol 2023; 31:885-888. [PMID: 37301687 DOI: 10.1016/j.tim.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Understanding the mechanisms structuring soil bacterial diversity has critical implications to advance the parametrization of species distribution models. This forum article discusses recent advances in the use of the metabolic theory of ecology applicable to soil microbiology, and highlights challenges and opportunities to inform future empirical and theoretical studies.
Collapse
Affiliation(s)
- Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
11
|
Li X, Chen D, Carrión VJ, Revillini D, Yin S, Dong Y, Zhang T, Wang X, Delgado-Baquerizo M. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat Commun 2023; 14:5090. [PMID: 37607924 PMCID: PMC10444831 DOI: 10.1038/s41467-023-40810-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Soil-borne pathogens pose a major threat to food production worldwide, particularly under global change and with growing populations. Yet, we still know very little about how the soil microbiome regulates the abundance of soil pathogens and their impact on plant health. Here we combined field surveys with experiments to investigate the relationships of soil properties and the structure and function of the soil microbiome with contrasting plant health outcomes. We find that soil acidification largely impacts bacterial communities and reduces the capacity of soils to combat fungal pathogens. In vitro assays with microbiomes from acidified soils further highlight a declined ability to suppress Fusarium, a globally important plant pathogen. Similarly, when we inoculate healthy plants with an acidified soil microbiome, we show a greatly reduced capacity to prevent pathogen invasion. Finally, metagenome sequencing of the soil microbiome and untargeted metabolomics reveals a down regulation of genes associated with the synthesis of sulfur compounds and reduction of key traits related to sulfur metabolism in acidic soils. Our findings suggest that changes in the soil microbiome and disruption of specific microbial processes induced by soil acidification can play a critical role for plant health.
Collapse
Affiliation(s)
- Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dele Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Víctor J Carrión
- Microbial Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM) UMA-CSIC, 29010, Málaga, Spain
| | - Daniel Revillini
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
| |
Collapse
|
12
|
Wang Z, Tao T, Wang H, Chen J, Small GE, Johnson D, Chen J, Zhang Y, Zhu Q, Zhang S, Song Y, Kattge J, Guo P, Sun X. Forms of nitrogen inputs regulate the intensity of soil acidification. GLOBAL CHANGE BIOLOGY 2023; 29:4044-4055. [PMID: 37186143 DOI: 10.1111/gcb.16746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/21/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Soil acidification induced by reactive nitrogen (N) inputs can alter the structure and function of terrestrial ecosystems. Because different N-transformation processes contribute to the production and consumption of H+ , the magnitude of acidification likely depends on the relative amounts of organic N (ON) and inorganic N (IN) inputs. However, few studies have explicitly measured the effects of N composition on soil acidification. In this study, we first conducted a meta-analysis to test the effects of ON or IN inputs on soil acidification across 53 studies in grasslands. We then compared soil acidification across five different ON:IN ratios and two input rates based on long-term field N addition experiments. The meta-analysis showed that ON had weaker effects on soil acidification than IN when the N addition rate was above 20 g N m-2 year-1 . The field experiment confirmed the findings from meta-analysis: N addition with proportions of ON ≥ 20% caused less soil acidification, especially at a high input rate (30 g N m-2 year-1 ). Structural equation model analysis showed that this result was largely due to a relatively low rate of H+ production from ON as NH3 volatilization and uptake of ON and NH4 + by the dominant grass species Leymus chinensis (which are both lower net contributors to H+ production) result in less NH4 + available for nitrification (which is a higher net contributor to H+ production). These results indicate that the evaluation of soil acidification induced by N inputs should consider N forms and manipulations of relative composition of N inputs may provide an effective approach to alleviate the N-induced soil acidification.
Collapse
Affiliation(s)
- Ze Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tingting Tao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Hu Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Gaston E Small
- Department of Biology, University of St Thomas, Saint Paul, Minnesota, USA
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Jihui Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yingjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qichao Zhu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, China
| | - Shengmin Zhang
- College of Resources and Environment, Jilin Agricultural University, Jilin, China
| | - Yantao Song
- College of Environment and Resources, Dalian Minzu University, Dalian, China
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Peng Guo
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiao Sun
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Yan K, Wei M, Li F, Wu C, Yi S, Tian J, Liu Y, Lu H. Diffusion and enrichment of high-risk antibiotic resistance genes (ARGs) via the transmission chain (mulberry leave, guts and feces of silkworm, and soil) in an ecological restoration area of manganese mining, China: Role of heavy metals. ENVIRONMENTAL RESEARCH 2023; 225:115616. [PMID: 36871940 DOI: 10.1016/j.envres.2023.115616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to β-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.
Collapse
Affiliation(s)
- Kanxuan Yan
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| |
Collapse
|
14
|
Sun B, Barnes AD. Editorial: Soil-root-microbe interactions promote soil and plant health. Front Microbiol 2023; 14:1155234. [PMID: 36950170 PMCID: PMC10025551 DOI: 10.3389/fmicb.2023.1155234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Bo Sun
| | - Andrew D. Barnes
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|