1
|
Hu XQ, Song R, Dasgupta C, Liu T, Zhang M, Twum-Barimah S, Blood AB, Zhang L. Rad-mediated inhibition of Ca V1.2 channel activity contributes to uterine artery haemodynamic adaptation to pregnancy. J Physiol 2024; 602:6729-6744. [PMID: 39612361 DOI: 10.1113/jp287334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The striking increase of uterine blood flow during pregnancy is essential for normal fetal development as well as for cardiovascular well-being of the mother. Yet, the underlying mechanisms of pregnancy-mediated vasodilatation of the uterine artery are not fully understood. In this study, we test the hypothesis that Rad, a monomeric G protein, is a novel regulatory mechanism in inhibiting CaV1.2 channel currents in uterine artery haemodynamic adaptation to pregnancy in a sheep model. We found that pregnancy significantly upregulates Rad expression and decreases CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad knockdown ex vivo and in vivo increases CaV1.2 activity and channel window currents by reducing steady-state inactivation in uterine arteries of pregnant sheep, recapitulating the phenotype of uterine arteries in non-pregnant animals. Moreover, Rad knockdown in vivo in pregnant sheep enhances myogenic tone and phenylephrine-induced vasoconstriction of uterine arteries. Whereas knockdown of Rad has no effect on mesenteric arterial CaV1.2 channel activity and mean arterial blood pressure, it significantly increases uterine vascular resistance and decreases uterine artery blood flow. Our study reveals a novel cause-and-effect mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arteries to facilitate increased uterine blood flow, providing new insights into fundamental mechanisms of uterine haemodynamic adaptation to pregnancy. KEY POINTS: Pregnancy suppresses CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad, a monomeric G protein, is upregulated in uterine arteries of pregnant sheep. Rad knockdown ex vivo or in vivo increases CaV1.2 channel currents in uterine arteries from pregnant ewes. In vivo knockdown of Rad elevates uterine vascular resistance and decreases uterine blood flow in pregnant sheep. The study reveals a novel mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arterial haemodynamic adaptation to pregnancy.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Uterine Artery/physiology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Calcium Channels, L-Type/genetics
- Sheep
- Adaptation, Physiological/physiology
- Hemodynamics
- Vasoconstriction/physiology
- Vasodilation/physiology
- Myocytes, Smooth Muscle/physiology
- Myocytes, Smooth Muscle/metabolism
- Vascular Resistance/physiology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephen Twum-Barimah
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M, Tsemakhovich V, Sholokh A, Watad B, Tripathy DR, Sasson G, Chomsky-Hecht O, Vysochek L, Schulz-Christian M, Fecher-Trost C, Zühlke K, Bertinetti D, Herberg FW, Flockerzi V, Hirsch JA, Klussmann E, Weiss S, Dascal N. Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca 2+ channel may modulate its β-adrenergic regulation. BMC Biol 2024; 22:276. [PMID: 39609812 PMCID: PMC11603854 DOI: 10.1186/s12915-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear. RESULTS We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte. CONCLUSIONS We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.
Collapse
Affiliation(s)
- Shimrit Oz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- Department of Neuroscience, Faculty of Medicine, The Ruth and Bruce Rappaport, Haifa, 3109601, Israel
| | - Tal Keren-Raifman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Tom Sharon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Suraj Subramaniam
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moshe Katz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Vladimir Tsemakhovich
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Baraa Watad
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Debi Ranjan Tripathy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
- National Forensic Science University, Radhanagar, Agartala, Tripura, 799001, India
| | - Giorgia Sasson
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Orna Chomsky-Hecht
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Leonid Vysochek
- Heart Center, Sheba Medical Center, Ramat Gan, 5262000, Israel
| | - Maike Schulz-Christian
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Fecher-Trost
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Veit Flockerzi
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Joel A Hirsch
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Sharon Weiss
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| | - Nathan Dascal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| |
Collapse
|
3
|
Wang L, Chen Y, Li J, Westenbroek R, Philyaw T, Zheng N, Scott JD, Liu Q, Catterall WA. Anchored PKA synchronizes adrenergic phosphoregulation of cardiac Ca v1.2 channels. J Biol Chem 2024; 300:107656. [PMID: 39128715 PMCID: PMC11408856 DOI: 10.1016/j.jbc.2024.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Adrenergic modulation of voltage gated Ca2+ currents is a context specific process. In the heart Cav1.2 channels initiate excitation-contraction coupling. This requires PKA phosphorylation of the small GTPase Rad (Ras associated with diabetes) and involves direct phosphorylation of the Cav1.2 α1 subunit at Ser1700. A contributing factor is the proximity of PKA to the channel through association with A-kinase anchoring proteins (AKAPs). Disruption of PKA anchoring by the disruptor peptide AKAP-IS prevents upregulation of Cav1.2 currents in tsA-201 cells. Biochemical analyses demonstrate that Rad does not function as an AKAP. Electrophysiological recording shows that channel mutants lacking phosphorylation sites (Cav1.2 STAA) lose responsivity to the second messenger cAMP. Measurements in cardiomyocytes isolated from Rad-/- mice show that adrenergic activation of Cav1.2 is attenuated but not completely abolished. Whole animal electrocardiography studies reveal that cardiac selective Rad KO mice exhibited higher baseline left ventricular ejection fraction, greater fractional shortening, and increased heart rate as compared to control animals. Yet, each parameter of cardiac function was slightly elevated when Rad-/- mice were treated with the adrenergic agonist isoproterenol. Thus, phosphorylation of Cav1.2 and dissociation of phospho-Rad from the channel are local cAMP responsive events that act in concert to enhance L-type calcium currents. This convergence of local PKA regulatory events at the cardiac L-type calcium channel may permit maximal β-adrenergic influence on the fight-or-flight response.
Collapse
Affiliation(s)
- Lipeng Wang
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Yi Chen
- Department of Neurobiology and Biophysics, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jin Li
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Ruth Westenbroek
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Travis Philyaw
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA; Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA.
| | - Qinghang Liu
- Department of Neurobiology and Biophysics, University of Washington, School of Medicine, Seattle, Washington, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA
| |
Collapse
|
4
|
Papa A, del Rivero Morfin PJ, Chen BX, Yang L, Katchman AN, Zakharov SI, Liu G, Bohnen MS, Zheng V, Katz M, Subramaniam S, Hirsch JA, Weiss S, Dascal N, Karlin A, Pitt GS, Colecraft HM, Ben-Johny M, Marx SO. A membrane-associated phosphoswitch in Rad controls adrenergic regulation of cardiac calcium channels. J Clin Invest 2024; 134:e176943. [PMID: 38227371 PMCID: PMC10904049 DOI: 10.1172/jci176943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on β-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavβ subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad's polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad's N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad's association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVβ, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad's C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVβ, is sufficient for sympathetic upregulation of Ca2+ currents.
Collapse
Affiliation(s)
- Arianne Papa
- Division of Cardiology, Department of Medicine, and
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Pedro J. del Rivero Morfin
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bi-Xing Chen
- Division of Cardiology, Department of Medicine, and
| | - Lin Yang
- Division of Cardiology, Department of Medicine, and
| | | | | | - Guoxia Liu
- Division of Cardiology, Department of Medicine, and
| | | | - Vivian Zheng
- Division of Cardiology, Department of Medicine, and
| | | | | | - Joel A. Hirsch
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Arthur Karlin
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute and Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Pharmacology and Molecular Signaling, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, and
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Pharmacology and Molecular Signaling, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|
6
|
Ismaili D, Schulz C, Horváth A, Koivumäki JT, Mika D, Hansen A, Eschenhagen T, Christ T. Human induced pluripotent stem cell-derived cardiomyocytes as an electrophysiological model: Opportunities and challenges-The Hamburg perspective. Front Physiol 2023; 14:1132165. [PMID: 36875015 PMCID: PMC9978010 DOI: 10.3389/fphys.2023.1132165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Models based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are proposed in almost any field of physiology and pharmacology. The development of human induced pluripotent stem cell-derived cardiomyocytes is expected to become a step forward to increase the translational power of cardiovascular research. Importantly they should allow to study genetic effects on an electrophysiological background close to the human situation. However, biological and methodological issues revealed when human induced pluripotent stem cell-derived cardiomyocytes were used in experimental electrophysiology. We will discuss some of the challenges that should be considered when human induced pluripotent stem cell-derived cardiomyocytes will be used as a physiological model.
Collapse
Affiliation(s)
- Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - András Horváth
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Jussi T. Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Delphine Mika
- Inserm, UMR-S 1180, Université Paris-Saclay, Orsay, France
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
7
|
Hovey L, Guo X, Chen Y, Liu Q, Catterall WA. Impairment of β-adrenergic regulation and exacerbation of pressure-induced heart failure in mice with mutations in phosphoregulatory sites in the cardiac Ca V1.2 calcium channel. Front Physiol 2023; 14:1049611. [PMID: 36846334 PMCID: PMC9944942 DOI: 10.3389/fphys.2023.1049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
The cardiac calcium channel CaV1.2 conducts L-type calcium currents that initiate excitation-contraction coupling and serves as a crucial mediator of β-adrenergic regulation of the heart. We evaluated the inotropic response of mice with mutations in C-terminal phosphoregulatory sites under physiological levels of β-adrenergic stimulation in vivo, and we assessed the impact of combining mutations of C-terminal phosphoregulatory sites with chronic pressure-overload stress. Mice with Ser1700Ala (S1700A), Ser1700Ala/Thr1704Ala (STAA), and Ser1928Ala (S1928A) mutations had impaired baseline regulation of ventricular contractility and exhibited decreased inotropic response to low doses of β-adrenergic agonist. In contrast, treatment with supraphysiogical doses of agonist revealed substantial inotropic reserve that compensated for these deficits. Hypertrophy and heart failure in response to transverse aortic constriction (TAC) were exacerbated in S1700A, STAA, and S1928A mice whose β-adrenergic regulation of CaV1.2 channels was blunted. These findings further elucidate the role of phosphorylation of CaV1.2 at regulatory sites in the C-terminal domain for maintaining normal cardiac homeostasis, responding to physiological levels of β-adrenergic stimulation in the fight-or-flight response, and adapting to pressure-overload stress.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, United States
| | - Xiaoyun Guo
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Yi Chen
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Qinghang Liu
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A. Catterall
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|