1
|
Schinkel M, Bousema T, van Rij RP. Tripartite interactions between viruses, parasites, and mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101222. [PMID: 38908822 DOI: 10.1016/j.cois.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus-parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.
Collapse
Affiliation(s)
- Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Zeineddine S, Jaber S, Saab SA, Nakhleh J, Dimopoulos G, Osta MA. Late sporogonic stages of Plasmodium parasites are susceptible to the melanization response in Anopheles gambiae mosquitoes. Front Cell Infect Microbiol 2024; 14:1438019. [PMID: 39149419 PMCID: PMC11324593 DOI: 10.3389/fcimb.2024.1438019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The malaria-causing parasites have to complete a complex infection cycle in the mosquito vector that also involves attack by the insect's innate immune system, especially at the early stages of midgut infection. However, Anopheles immunity to the late Plasmodium sporogonic stages, such as oocysts, has received little attention as they are considered to be concealed from immune factors due to their location under the midgut basal lamina and for harboring an elaborate cell wall comprising an external layer derived from the basal lamina that confers self-properties to an otherwise foreign structure. Here, we investigated whether Plasmodium berghei oocysts and sporozoites are susceptible to melanization-based immunity in Anopheles gambiae. Silencing of the negative regulator of melanization response, CLIPA14, increased melanization prevalence without significantly increasing the numbers of melanized oocysts, while co-silencing CLIPA14 with CLIPA2, a second negative regulator of melanization, resulted in a significant increase in melanized oocysts and melanization prevalence. Only late-stage oocysts were found to be melanized, suggesting that oocyst rupture was a prerequisite for melanization-based immune attack, presumably due to the loss of the immune-evasive features of their wall. We also found melanized sporozoites inside oocysts and in the hemocoel, suggesting that sporozoites at different maturation stages are susceptible to melanization. Silencing the melanization promoting factors TEP1 and CLIPA28 rescued oocyst melanization in CLIPA2/CLIPA14 co-silenced mosquitoes. Interestingly, silencing of CTL4, that protects early stage ookinetes from melanization, had no effect on oocysts and sporozoites, indicating differential regulation of immunity to early and late sporogonic stages. Similar to previous studies addressing ookinete stage melanization, the melanization of Plasmodium falciparum oocysts was significantly lower than that observed for P. berghei. In summary, our results provide conclusive evidence that late sporogonic malaria parasite stages are susceptible to melanization, and we reveal distinct regulatory mechanisms for ookinete and oocyst melanization.
Collapse
Affiliation(s)
- Suheir Zeineddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sana Jaber
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally A. Saab
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Johnny Nakhleh
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Mou J, Ning XL, Wang XY, Hou SY, Meng FB, Zhou C, Wu JW, Li C, Jia T, Wu X, Wu Y, Chen Y, Li GB. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson's Disease Mouse Model. J Med Chem 2024; 67:8730-8756. [PMID: 38817193 DOI: 10.1021/acs.jmedchem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.
Collapse
Affiliation(s)
- Jun Mou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yan Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan-Bo Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
5
|
Zeineddine S, Jaber S, Saab SA, Nakhleh J, Dimopoulos G, Osta MA. Late sporogonic stages of Plasmodium parasites are susceptible to the melanization response in Anopheles gambiae mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596773. [PMID: 38853990 PMCID: PMC11160730 DOI: 10.1101/2024.05.31.596773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The malaria-causing parasites have to complete a complex infection cycle in the mosquito vector that also involves attack by the insect's innate immune system, especially at the early stages of midgut infection. However, Anopheles immunity to the late Plasmodium sporogonic stages, such as oocysts, has received little attention as they are considered to be concealed from immune factors due to their location under the midgut basal lamina and for harboring an elaborate cell wall comprising an external layer derived from the basal lamina that confers self-properties to an otherwise foreign structure. Here, we investigated whether Plasmodium berghei oocysts and sporozoites are susceptible to melanization-based immunity in Anopheles gambiae. Silencing of the negative regulator of melanization response, CLIPA14, increased melanization prevalence without significantly increasing the numbers of melanized oocysts, while co-silencing CLIPA14 with CLIPA2, a second negative regulator of melanization, resulted in a significant increase in melanized oocysts and melanization prevalence. Only late-stage oocysts were found to be melanized, suggesting that oocyst rupture was a prerequisite for melanization-based immune attack, presumably due to the loss of the immune-evasive features of their wall. We also found melanized sporozoites inside oocysts and in the hemocoel, suggesting that sporozoites at different maturation stages are susceptible to melanization. Silencing the melanization promoting factors TEP1 and CLIPA28 rescued oocyst melanization in CLIPA2/CLIPA14 co-silenced mosquitoes. Interestingly, silencing of CTL4, that protects early stage ookinetes from melanization, had no effect on oocysts and sporozoites, indicating differential regulation of immunity to early and late sporogonic stages. Similar to previous studies addressing ookinete stage melanization, the melanization of Plasmodium falciparum oocysts was significantly lower than that observed for P. berghei. In summary, our results provide conclusive evidence that late sporogonic malaria parasite stages are susceptible to melanization, and we reveal distinct regulatory mechanisms for ookinete and oocyst melanization.
Collapse
Affiliation(s)
- Suheir Zeineddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sana Jaber
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally A. Saab
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Johnny Nakhleh
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
dos Santos NAC, Bastos ADS, Araújo JE, Pontual JDC, Medeiros JF, Vinetz JM, Araujo MDS. Case Report: Plasmodium vivax Sporozoite Melanization in the Midgut and Salivary Gland of the Malaria Vector Anopheles darlingi. Am J Trop Med Hyg 2024; 110:444-447. [PMID: 38350139 PMCID: PMC10919193 DOI: 10.4269/ajtmh.23-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024] Open
Abstract
Anopheles darlingi is the primary malaria vector in the Amazon region and is highly susceptible to both Plasmodium vivax and Plasmodium falciparum parasites. Although anopheline mosquitoes may develop melanotic encapsulation in response to Plasmodium parasites, there is no record of An. darlingi exhibiting a melanization response to P. vivax, the main malaria parasite in the Americas. Here, we report the occurrence of P. vivax sporozoite melanization in An. darlingi mosquitoes.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho, RO, Brazil
| | - Alessandra da Silva Bastos
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jéssica Evangelista Araújo
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental – Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - José Daniel Costa Pontual
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen Fernandes Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho, RO, Brazil
| | - Joseph Michael Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais – PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho, Rondônia, Brazil
| |
Collapse
|
7
|
Thieleke-Matos C, Walz K, Frischknecht F, Singer M. Overcoming the egress block of Plasmodium sporozoites expressing fluorescently tagged circumsporozoite protein. Mol Microbiol 2024; 121:565-577. [PMID: 38396332 DOI: 10.1111/mmi.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024]
Abstract
Plasmodium sporozoites are the highly motile and invasive forms of the malaria parasite transmitted by mosquitoes. Sporozoites form within oocysts at the midgut wall of the mosquito, egress from oocysts and enter salivary glands prior to transmission. The GPI-anchored major surface protein, the circumsporozoite protein (CSP) is important for Plasmodium sporozoite formation, egress, migration and invasion. To visualize CSP, we previously generated full-length versions of CSP internally tagged with the green fluorescent protein, GFP. However, while these allowed for imaging of sporogony in oocysts, sporozoites failed to egress. Here, we explore different strategies to overcome this block in egress and obtain salivary gland resident sporozoites that express CSP-GFP. Replacing the N-terminal and repeat region with GFP did not allow sporozoite formation. Lowering expression of CSP-GFP at the endogenous locus allowed sporozoite formation but did not overcome egress block. Crossing of CSP-GFP expressing parasites that are blocked in egress with wild-type parasites yielded a small fraction of parasites that entered salivary glands and expressed various levels of CSP-GFP. Expressing CSP-GFP constructs from a silent chromosome region from promoters that are active only post salivary gland invasion yielded normal numbers of fluorescent salivary gland sporozoites, albeit with low levels of fluorescence. We also show that lowering CSP expression by 50% allowed egress from oocysts but not salivary gland entry. In conclusion, Plasmodium berghei parasites with normal CSP expression tolerate a certain level of CSP-GFP without disruption of oocyst egress and salivary gland invasion.
Collapse
Affiliation(s)
- Carolina Thieleke-Matos
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Kevin Walz
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner site Heidelberg, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
8
|
Wang N, Wang T. Innovative translational platforms for rapid developing clinical vaccines against COVID-19 and other infectious disease. Biotechnol J 2024; 19:e2300658. [PMID: 38403469 DOI: 10.1002/biot.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
A vaccine is a biological preparation that contains the antigen capable of stimulating the immune system to form the defense against pathogens. Vaccine development often confronts big challenges, including time/energy-consuming, low efficacy, lag to pathogen emergence and mutation, and even safety concern. However, these seem now mostly conquerable through constructing the advanced translational platforms that can make innovative vaccines, sometimes, potentiated with a distinct multifunctional VADS (vaccine adjuvant delivery system), as evidenced by the development of various vaccines against the covid-19 pandemic at warp speed. Particularly, several covid-19 vaccines, such as the viral-vectored vaccines, mRNA vaccines and DNA vaccines, regarded as the innovative ones that are rapidly made via the high technology-based translational platforms. These products have manifested powerful efficacy while showing no unacceptable safety profile in clinics, allowing them to be approved for massive vaccination at also warp speed. Now, the proprietary translational platforms integrated with the state-of-the-art biotechnologies, and even the artificial intelligence (AI), represent an efficient mode for rapid making innovative clinical vaccines against infections, thus increasingly attracting interests of vaccine research and development. Herein, the advanced translational platforms for making innovative vaccines, together with their design principles and immunostimulatory efficacies, are comprehensively elaborated.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
9
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
10
|
Klug D, Blandin SA. Activation of complement-like antiparasitic responses in Anopheles mosquitoes. Curr Opin Microbiol 2023; 72:102280. [PMID: 36841199 DOI: 10.1016/j.mib.2023.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
During their development in mosquitoes, malaria parasites undergo massive losses that are in part due to a potent antiparasitic response mounted by the vector. The most efficient and best-characterized response relies on a complement-like system particularly effective against parasites as they cross the mosquito midgut epithelium. While our vision of the molecular and cellular events that lead to parasite elimination is still partial, our understanding of the steps triggering complement activation at the surface of invading parasites has considerably progressed, not only through the identification of novel contributing genes, but also with the recent in-depth characterization of the different mosquito blood cell types, and the ability to track them in live mosquitoes. Here, we propose a simple model based on the time of invasion to explain how parasites may escape complement-like responses during midgut infection.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000 Strasbourg, France
| | - Stephanie A Blandin
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000 Strasbourg, France.
| |
Collapse
|
11
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|