1
|
Mishra A, Mishra A, Taylor MA, Sharma D, Kubesh M. Poor disease-specific survival in Black pediatric patients diagnosed with Burkitt lymphoma: An analysis of the Surveillance, Epidemiology, and End Results database. Pediatr Blood Cancer 2024; 71:e31204. [PMID: 39010654 DOI: 10.1002/pbc.31204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Anjali Mishra
- School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Avisya Mishra
- School of Medicine, St. George's University, St. George's, Grenada
| | - Mitchell A Taylor
- School of Medicine, Creighton University, Omaha, Nebraska, USA
- Department of Dermatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Divya Sharma
- Department of Dermatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Molly Kubesh
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Huang J, Nabalende H, Camargo MC, Lovett J, Otim I, Legason ID, Ogwang MD, Kerchan P, Kinyera T, Ayers LW, Bhatia K, Goedert JJ, Reynolds SJ, Crompton PD, Moore SC, Moaddel R, Albanes D, Mbulaiteye SM. Plasma metabolites in childhood Burkitt lymphoma cases and cancer-free controls in Uganda. Metabolomics 2024; 20:67. [PMID: 38940866 PMCID: PMC11213758 DOI: 10.1007/s11306-024-02130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma associated with Plasmodium falciparum and Epstein-Barr virus, both of which affect metabolic pathways. The metabolomic patterns of BL is unknown. MATERIALS AND METHODS We measured 627 metabolites in pre-chemotherapy treatment plasma samples from 25 male children (6-11 years) with BL and 25 cancer-free area- and age-frequency-matched male controls from the Epidemiology of Burkitt Lymphoma in East African Children and Minors study in Uganda using liquid chromatography-tandem mass spectrometry. Unconditional, age-adjusted logistic regression analysis was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) for the BL association with 1-standard deviation increase in the log-metabolite concentration, adjusting for multiple comparisons using false discovery rate (FDR) thresholds and Bonferroni correction. RESULTS Compared to controls, levels for 42 metabolite concentrations differed in BL cases (FDR < 0.001), including triacylglyceride (18:0_38:6), alpha-aminobutyric acid (AABA), ceramide (d18:1/20:0), phosphatidylcholine ae C40:6 and phosphatidylcholine C38:6 as the top signals associated with BL (ORs = 6.9 to 14.7, P < 2.4✕10- 4). Two metabolites (triacylglyceride (18:0_38:6) and AABA) selected using stepwise logistic regression discriminated BL cases from controls with an area under the curve of 0.97 (95% CI: 0.94, 1.00). CONCLUSION Our findings warrant further examination of plasma metabolites as potential biomarkers for BL risk/diagnosis.
Collapse
Affiliation(s)
- Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410128, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Changsha, China
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, HHS,, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Jacqueline Lovett
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, Arua & African Field Epidemiology Network, Kuluva Hospital, Kuluva, Kampala, Uganda
| | - Martin D Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, Arua & African Field Epidemiology Network, Kuluva Hospital, Kuluva, Kampala, Uganda
| | - Tobias Kinyera
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, HHS,, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, HHS,, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Crompton
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, HHS,, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, HHS,, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, HHS,, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Velavan TP, Kremsner PG. Use of Insecticide-Treated Bed Nets and Incidence of Burkitt Lymphoma. JAMA Netw Open 2024; 7:e247358. [PMID: 38635275 DOI: 10.1001/jamanetworkopen.2024.7358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Affiliation(s)
- Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
4
|
Schmit N, Kaur J, Aglago EK. Mosquito Bed Net Use and Burkitt Lymphoma Incidence in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e247351. [PMID: 38635267 DOI: 10.1001/jamanetworkopen.2024.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Importance Burkitt lymphoma (BL) is one of the most common childhood cancers in sub-Saharan Africa and is etiologically linked to malaria. However, evidence for an effect of malaria interventions on BL is limited. Objective To investigate the potential population-level association between large-scale rollout of insecticide-treated bed nets (ITNs) in sub-Saharan Africa in the 2000s and BL incidence. Data Sources In this systematic review and meta-analysis, a search was conducted in the Embase, Global Health, and Medline databases and in cancer registry publications between January 1, 1990, and February 27, 2023. Study Selection All epidemiologic studies on BL incidence rates in children and adolescents aged 0 to 15 years in sub-Saharan African countries where malaria is endemic were identified by 2 reviewers blinded to each other's decision. Data Extraction and Synthesis The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline. Data were extracted independently by 2 reviewers, and quality was scored based on 3 predefined criteria: data collection, case ascertainment, and calculation of person-time at risk. Main Outcomes and Measures Incidence rates of BL during childhood and mean ITN use in the population. Data were analyzed using a random-effects negative binomial regression model. Results Of 2333 studies meeting selection criteria, 23 comprising 66 data points on BL incidence were included based on 5226 BL cases from locations with large-scale ITN use in 17 countries. Rates of BL were 44% (95% CI, 12%-64%) lower in the period after ITN introduction compared with before. The adjusted pooled incidence rates of BL were 1.36 (95% CI, 0.88-2.10) and 0.76 (95% CI, 0.50-1.16) per 100 000 person-years before and after introduction of ITNs, respectively. After adjusting for potential confounders, a 1-percentage point increase in mean ITN use in the population in the 10 years before BL data collection was associated with a 2% (95% CI, 1%-4%) reduction in BL incidence. Conclusions and Relevance In this systematic review and meta-analysis, large-scale rollout of ITNs in the 2000s was associated with a reduction in BL burden among children in sub-Saharan Africa. Although published data may not be representative of all incidence rates across sub-Saharan Africa, this study highlights a potential additional benefit of malaria control programs.
Collapse
Affiliation(s)
- Nora Schmit
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Jeevan Kaur
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
- Faculty of Science and Technology, University of Kara, Kara, Togo
| |
Collapse
|
5
|
Samayoa-Reyes G, Weigel C, Koech E, Waomba K, Jackson C, Onditi IA, Sabourin KR, Kenney S, Baiocchi RA, Oakes CC, Ogolla S, Rochford R. Effect of Malaria Infection on Epstein-Barr Virus Persistence in Kenyan Children. J Infect Dis 2024; 229:73-82. [PMID: 37433031 PMCID: PMC10786253 DOI: 10.1093/infdis/jiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The 2 cofactors in the etiology of Burkitt lymphoma (BL) are Epstein-Barr virus (EBV) and repeated Plasmodium falciparum malaria infections. This study evaluated EBV loads in mucosal and systemic compartments of children with malaria and controls. Age was analyzed as a covariate because immunity to malaria in endemic regions is age dependent. METHODS Children (2-10 years) with clinical malaria from Western Kenya and community controls without malaria were enrolled. Saliva and blood samples were collected, EBV viral load was assessed by quantitative polymerase chain reaction, and EpiTYPER MassARRAY was used to assess methylation of 3 different EBV genes. RESULTS Regardless of the compartment, we detected EBV more frequently in malaria cases compared to controls, although the difference was not significant. When EBV was detected, there were no differences in viral load between cases and controls. However, EBV methylation was significantly lower in the malaria group compared to controls in both plasma and saliva (P < .05), indicating increased EBV lytic replication. In younger children before development of immunity to malaria, there was a significant effect of malaria on EBV load in peripheral blood mononuclear cells (P = .04). CONCLUSIONS These data suggest that malaria can directly modulate EBV persistence in children, increasing their risk for BL.
Collapse
Affiliation(s)
- Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christoph Weigel
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Emmily Koech
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin Waomba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Conner Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian A Onditi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Katherine R Sabourin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shannon Kenney
- Department of Oncology, McArdle Laboratory, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A Baiocchi
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Christopher C Oakes
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Sidney Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
6
|
Liu Z, Luo Y, Kirimunda S, Verboom M, Onabajo OO, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Dhudha H, Ayers LW, Bhatia K, Goedert JJ, Cole N, Luo W, Liu J, Manning M, Hicks B, Prokunina-Olsson L, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hsing AW, Mensah JE, Adjei AA, Hutchinson A, Carrington M, Yeager M, Blasczyk R, Chanock SJ, Raychaudhuri S, Mbulaiteye SM. Human leukocyte antigen-DQA1*04:01 and rs2040406 variants are associated with elevated risk of childhood Burkitt lymphoma. Commun Biol 2024; 7:41. [PMID: 38182727 PMCID: PMC10770398 DOI: 10.1038/s42003-023-05701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Burkitt lymphoma (BL) is responsible for many childhood cancers in sub-Saharan Africa, where it is linked to recurrent or chronic infection by Epstein-Barr virus or Plasmodium falciparum. However, whether human leukocyte antigen (HLA) polymorphisms, which regulate immune response, are associated with BL has not been well investigated, which limits our understanding of BL etiology. Here we investigate this association among 4,645 children aged 0-15 years, 800 with BL, enrolled in Uganda, Tanzania, Kenya, and Malawi. HLA alleles are imputed with accuracy >90% for HLA class I and 85-89% for class II alleles. BL risk is elevated with HLA-DQA1*04:01 (adjusted odds ratio [OR] = 1.61, 95% confidence interval [CI] = 1.32-1.97, P = 3.71 × 10-6), with rs2040406(G) in HLA-DQA1 region (OR = 1.43, 95% CI = 1.26-1.63, P = 4.62 × 10-8), and with amino acid Gln at position 53 versus other variants in HLA-DQA1 (OR = 1.36, P = 2.06 × 10-6). The associations with HLA-DQA1*04:01 (OR = 1.29, P = 0.03) and rs2040406(G) (OR = 1.68, P = 0.019) persist in mutually adjusted models. The higher risk rs2040406(G) variant for BL is associated with decreased HLA-DQB1 expression in eQTLs in EBV transformed lymphocytes. Our results support the role of HLA variation in the etiology of BL and suggest that a promising area of research might be understanding the link between HLA variation and EBV control.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yang Luo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Kirimunda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Murielle Verboom
- Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Olusegun O Onabajo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D Ogwang
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Arua, Uganda
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - George Chagaluka
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - George N Liomba
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, Lilongwe, Malawi
| | - Elizabeth M Molyneux
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | | | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
7
|
Hong HG, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Wang X, Zhou J, Leal TP, Otim I, Legason ID, Nabalende H, Dhudha H, Mumia M, Baker FS, Okusolubo T, Ayers LW, Bhatia K, Goedert JJ, Woo J, Manning M, Cole N, Luo W, Hicks B, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hutchinson A, Yeager M, Adeyemo AA, Thein SL, Rotimi CN, Chanock SJ, Prokunina-Olsson L, Mbulaiteye SM. Sickle cell allele HBB-rs334(T) is associated with decreased risk of childhood Burkitt lymphoma in East Africa. Am J Hematol 2024; 99:113-123. [PMID: 38009642 PMCID: PMC10872868 DOI: 10.1002/ajh.27149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.
Collapse
Affiliation(s)
- Hyokyoung G. Hong
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H. Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Xunde Wang
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Jiefu Zhou
- Department of Statistics and Probability, Michigan State University, MI, USA
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, Bugando Medical Center, Mwanza, Tanzania
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Francine S. Baker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Temiloluwa Okusolubo
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Joshua Woo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adebowale A. Adeyemo
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Charles N. Rotimi
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
8
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
9
|
Zhou W, Fischer A, Ogwang MD, Luo W, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Ayers LW, Bhatia K, Goedert JJ, Gouveia MH, Cole N, Hicks B, Jones K, Hummel M, Schlesner M, Chagaluka G, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Glaser S, Kretzmer H, Manning M, Hutchinson A, Hsing AW, Tettey Y, Adjei AA, Chanock SJ, Siebert R, Yeager M, Prokunina-Olsson L, Machiela MJ, Mbulaiteye SM. Mosaic chromosomal alterations in peripheral blood leukocytes of children in sub-Saharan Africa. Nat Commun 2023; 14:8081. [PMID: 38057307 PMCID: PMC10700489 DOI: 10.1038/s41467-023-43881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
In high-income countries, mosaic chromosomal alterations in peripheral blood leukocytes are associated with an elevated risk of adverse health outcomes, including hematologic malignancies. We investigate mosaic chromosomal alterations in sub-Saharan Africa among 931 children with Burkitt lymphoma, an aggressive lymphoma commonly characterized by immunoglobulin-MYC chromosomal rearrangements, 3822 Burkitt lymphoma-free children, and 674 cancer-free men from Ghana. We find autosomal and X chromosome mosaic chromosomal alterations in 3.4% and 1.7% of Burkitt lymphoma-free children, and 8.4% and 3.7% of children with Burkitt lymphoma (P-values = 5.7×10-11 and 3.74×10-2, respectively). Autosomal mosaic chromosomal alterations are detected in 14.0% of Ghanaian men and increase with age. Mosaic chromosomal alterations in Burkitt lymphoma cases include gains on chromosomes 1q and 8, the latter spanning MYC, while mosaic chromosomal alterations in Burkitt lymphoma-free children include copy-neutral loss of heterozygosity on chromosomes 10, 14, and 16. Our results highlight mosaic chromosomal alterations in sub-Saharan African populations as a promising area of research.
Collapse
Affiliation(s)
- Weiyin Zhou
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | | | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Mathias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Collins Mitambo
- Research Department, Ministry of Health, P.O. Box 30377, Lilongwe 3, Malawi
| | - Elizabeth M Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michelle Manning
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, Palo Alto, CA, USA
| | - Yao Tettey
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, P.O. Box KB 52, Korle-Bu, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, P.O. Box KB 52, Korle-Bu, Accra, Ghana
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA.
| |
Collapse
|