1
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Renken CJ, Kim S, Wu Y, Hammarlund M, Yogev S. Cytoplasmic ribosomes hitchhike on mitochondria to dendrites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612863. [PMID: 39314452 PMCID: PMC11419105 DOI: 10.1101/2024.09.13.612863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Neurons rely on local protein synthesis to rapidly modify the proteome of neurites distant from the cell body. A prerequisite for local protein synthesis is the presence of ribosomes in the neurite, but the mechanisms of ribosome transport in neurons remain poorly defined. Here, we find that ribosomes hitchhike on mitochondria for their delivery to the dendrite of a sensory neuron in C. elegans. Ribosomes co-transport with dendritic mitochondria, and their association requires the atypical Rho GTPase MIRO-1. Disrupting mitochondrial transport prevents ribosomes from reaching the dendrite, whereas ectopic re-localization of mitochondria results in a concomitant re-localization of ribosomes, demonstrating that mitochondria are required and sufficient for instructing ribosome distribution in dendrites. Endolysosomal organelles that are involved in mRNA transport and translation can associate with mitochondria and ribosomes but do not play a significant role in ribosome transport. These results reveal a mechanism for dendritic ribosome delivery, which is a critical upstream requirement for local protein synthesis.
Collapse
Affiliation(s)
- Corbin J. Renken
- Department of Neuroscience, Yale School of Medicine, 100 College St, New Haven, CT 06510
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven CT 06510
| | - Susie Kim
- Department of Neuroscience, Yale School of Medicine, 100 College St, New Haven, CT 06510
| | - Youjun Wu
- Department of Genetics, Yale School of Medicine, 100 College St, New Haven, CT 06510
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, 100 College St, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, 100 College St, New Haven, CT 06510
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 100 College St, New Haven, CT 06510
| |
Collapse
|
3
|
Baro L, Almhassneh RA, Islam A, Juanes MA. Tumor invasiveness is regulated by the concerted function of APC, formins, and Arp2/3 complex. iScience 2024; 27:109687. [PMID: 38680662 PMCID: PMC11053316 DOI: 10.1016/j.isci.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Tumor cell invasion is the initial step in metastasis, the leading cause of death from cancer. Invasion requires protrusive cellular structures that steer the migration of leader cells emanating from the tumor mass toward neighboring tissues. Actin is central to these processes and is therefore the prime target of drugs known as migrastatics. However, the broad effects of general actin inhibitors limit their therapeutic use. Here, we delineate the roles of specific actin nucleators in tuning actin-rich invasive protrusions and pinpoint potential pharmacological targets. We subject colorectal cancer spheroids embedded in collagen matrix-a preclinical model mirroring solid tumor invasiveness-to pharmacologic and/or genetic treatment of specific actin arrays to assess their roles in invasiveness. Our data reveal coordinated yet distinct involvement of actin networks nucleated by adenomatous polyposis coli, formins, and actin-related protein 2/3 complex in the biogenesis and maintenance of invasive protrusions. These findings may open avenues for better targeted therapies.
Collapse
Affiliation(s)
- Lautaro Baro
- Cytoskeletal Dynamics in Cell Migration and Cancer Invasion Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Rabeah A. Almhassneh
- Cytoskeletal Dynamics in Cell Migration and Cancer Invasion Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - M. Angeles Juanes
- Cytoskeletal Dynamics in Cell Migration and Cancer Invasion Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
4
|
Davies DS, Arthur AT, Aitken HL, Crossett B, Goldsbury CS. Protein complexes from mouse and chick brain that interact with phospho-KXGS motif tau/microtubule associated protein antibody. Biol Open 2024; 13:bio060067. [PMID: 38299702 PMCID: PMC10924212 DOI: 10.1242/bio.060067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Mouse monoclonal 12E8 antibody, which recognises conserved serine phosphorylated KXGS motifs in the microtubule binding domains of tau/tau-like microtubule associated proteins (MAPs), shows elevated binding in brain during normal embryonic development (mammals and birds) and at the early stages of human Alzheimer's disease (AD). It also labels ADF/cofilin-actin rods that form in neurites during exposure to stressors. We aimed to identify direct and indirect 12E8 binding proteins in postnatal mouse brain and embryonic chick brain by immunoprecipitation (IP), mass spectrometry and immunofluorescence. Tau and/or MAP2 were major direct 12E8-binding proteins detected in all IPs, and actin and/or tubulin were co-immunoprecipitated in most samples. Additional proteins were different in mouse versus chick brain IP. In mouse brain IPs, FSD1l and intermediate filament proteins - vimentin, α-internexin, neurofilament polypeptides - were prominent. Immunofluorescence and immunoblot using recombinant intermediate filament subunits, suggests an indirect interaction of these proteins with the 12E8 antibody. In chick brain IPs, subunits of eukaryotic translation initiation factor 3 (EIF3) were found, but no direct interaction between 12E8 and recombinant Eif3e protein was detected. Fluorescence microscopy in primary cultured chick neurons showed evidence of co-localisation of Eif3e and tubulin labelling, consistent with previous data demonstrating cytoskeletal organisation of the translation apparatus. Neither total tau or MAP2 immunolabelling accumulated at ADF/cofilin-actin rods generated in primary cultured chick neurons, and we were unable to narrow down the major antigen recognised by 12E8 antibody on ADF/cofilin-actin rods.
Collapse
Affiliation(s)
- D. S. Davies
- Faculty of Medicine and Health, School of Medical Sciences, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - A. T. Arthur
- Faculty of Medicine and Health, School of Medical Sciences, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - H. L. Aitken
- Faculty of Medicine and Health, School of Medical Sciences, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - B. Crossett
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2050, Australia
| | - C. S. Goldsbury
- Faculty of Medicine and Health, School of Medical Sciences, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
5
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
6
|
Schuhmacher JS, Tom Dieck S, Christoforidis S, Landerer C, Davila Gallesio J, Hersemann L, Seifert S, Schäfer R, Giner A, Toth-Petroczy A, Kalaidzidis Y, Bohnsack KE, Bohnsack MT, Schuman EM, Zerial M. The Rab5 effector FERRY links early endosomes with mRNA localization. Mol Cell 2023; 83:1839-1855.e13. [PMID: 37267905 DOI: 10.1016/j.molcel.2023.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Susanne Tom Dieck
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Savvas Christoforidis
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece; Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ramona Schäfer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Angelika Giner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|