1
|
Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The Reinforced Separation of Intractable Gas Mixtures by Using Porous Adsorbents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408416. [PMID: 39161083 DOI: 10.1002/adma.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.
Collapse
Affiliation(s)
- Quanli Ke
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Xiong
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guonan Fang
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Chen
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaopo Niu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengyun Pan
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guokai Cui
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Lee H, Hikima S, Ohnishi R, Takewaki T, Katz A. Privileged zeolitic sites for humid CO 2 adsorption: K + in double eight-membered rings. Chem Commun (Camb) 2024; 60:10140-10143. [PMID: 39189137 DOI: 10.1039/d4cc03267e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Humid CO2 adsorption in K+-exchanged zeolites featuring double-eight membered ring (D8R) structures results in CO2 outcompeting and desorbing dimeric water under equilibrated conditions, which is not observed for either the H+-form of the same zeolites or larger-pore zeolites.
Collapse
Affiliation(s)
- Hwangho Lee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA.
| | - Shu Hikima
- Mitsubishi Chemical Corporation, Science and Innovation Center, Aoba-ku, Yokohama 227-8502, Japan
| | - Ryohji Ohnishi
- Mitsubishi Chemical Corporation, Science and Innovation Center, Aoba-ku, Yokohama 227-8502, Japan
| | - Takahiko Takewaki
- Mitsubishi Chemical Corporation, Science and Innovation Center, Aoba-ku, Yokohama 227-8502, Japan
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
3
|
Oda A, Sawabe K, Satsuma A. Reversible Multi-Complexation of CO 2 to Alkaline Earth Metal Ion-Pair at 400 ppm and 298 K. Angew Chem Int Ed Engl 2024:e202411969. [PMID: 39252177 DOI: 10.1002/anie.202411969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
The efficient capture of low-pressure CO2 remains a significant challenge due to the lack of established multi-complexation of CO2 to active sites in microporous materials. In this study, we introduce a novel concept of reversible multi-complexation of CO2 to alkaline earth metal (AEM) ion pairs, utilizing a host site in ferrierite-type zeolite (FER). This unique site constrains two AEM ions in proximity, thereby enhancing and isotopically spreading their electrostatic potentials within the zeolite cavity. This electrostatic potential-engineered micropore can trap up to four CO2 molecules, forming M2+-(CO2)n-M2+ (n=0-4, M=Ca, Sr, Ba) complexes, where each CO2 molecule is stabilized by interactions between terminal oxygen (Ot) in CO2 and the AEM ions. Notably, the Ba2+ pair site exhibits higher thermodynamic stability for multiple adsorptions due to the optimal binding mode of Ba2+-Ot-Ba2+. Through high-accuracy energy calculations, we have established the relationship among structure, CO2 uptake, and operating temperature/pressure, demonstrating that the Ba2+ pair site can capture four CO2 molecules even at concentrations as low as 400 ppm and at 298 K. Three of the four molecules of CO2 trapped were removable at room temperature and under vacuum. The findings in the present study provide a new direction for developing efficient CO2 adsorbents.
Collapse
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| |
Collapse
|
4
|
Wang K, Zhang Z, Wang S, Jiang L, Li H, Wang C. Dual-Tuning Azole-Based Ionic Liquids for Reversible CO 2 Capture from Ambient Air. CHEMSUSCHEM 2024; 17:e202301951. [PMID: 38499466 DOI: 10.1002/cssc.202301951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
A strategy of tuning azole-based ionic liquids for reversible CO2 capture from ambient air was reported. Through tuning the basicity of anion as well as the type of cation, an ideal azole-based ionic liquid with both high CO2 capacity and excellent stability was synthesized, which exhibited a highest single-component isotherm uptake of 2.17 mmol/g at the atmospheric CO2 concentration of 0.4 mbar at 30 °C, even in the presence of water. The bound CO2 can be released by relatively mild heating of the IL-CO2 at 80 °C, which makes it promising for energy-efficient CO2 desorption and sorbent regeneration, leading to excellent reversibility. To the best of our knowledge, these azole-based ionic liquids are superior to other adsorbent materials for direct air capture due to their dual-tunable properties and high CO2 capture efficiency, offering a new prospect for efficient and reversible direct air capture technologies.
Collapse
Affiliation(s)
- Kaili Wang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Zhaowei Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Shenyao Wang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Lili Jiang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Haoran Li
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Congmin Wang
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Center of Chemistry for Frontier Technologies Institution, Zhejiang University, Hangzhou, 310027, P.R. China
| |
Collapse
|
5
|
Lu K, Ding T, Zhu M, Chen J, Yue D, Liu X, Fang X, Xia J, Qin Z, Wu M, Shi G. Double pyramid stacked CoO nano-crystals induced by graphene at low temperatures as highly efficient Fenton-like catalysts. Phys Chem Chem Phys 2024; 26:8681-8686. [PMID: 38441213 DOI: 10.1039/d4cp00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Transition metal oxides are widely used as Fenton-like catalysts in the treatment of organic pollutants, but their synthesis usually requires a high temperature. Herein, an all-solid-state synthesis method controlled by graphene was used to prepare a double pyramid stacked CoO nano-crystal at a low temperature. The preparation temperature decreased by 200 °C (over 30% reduction) due to the introduction of graphene, largely reducing the reaction energy barrier. Interestingly, the corresponding degradation rate constants (kobs) of this graphene-supported pyramid CoO nano-crystals for organic molecules after their adsorption were over 2.5 and 35 times higher than that before adsorption and that of free CoO, respectively. This high catalytic efficiency is attributed to the adsorption of pollutants at the surface by supporting graphene layers, while free radicals activated by CoO can directly and rapidly contact and degrade them. These findings provide a new strategy to prepare low carbon-consuming transition metal oxides for highly efficient Fenton-like catalysts.
Collapse
Affiliation(s)
- Kui Lu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Mengxiang Zhu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Junjie Chen
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Dongting Yue
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaoqin Fang
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Junfang Xia
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Zhiyuan Qin
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
6
|
Ribó EG, Mao Z, Hirschi JS, Linsday T, Bach K, Walter ED, Simons CR, Zuehlsdorff TJ, Nyman M. Implementing vanadium peroxides as direct air carbon capture materials. Chem Sci 2024; 15:1700-1713. [PMID: 38303956 PMCID: PMC10829016 DOI: 10.1039/d3sc05381d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024] Open
Abstract
Direct air capture (DAC) removal of anthropogenic CO2 from the atmosphere is imperative to slow the catastrophic effects of global climate change. Numerous materials are being investigated, including various alkaline inorganic metal oxides that form carbonates via DAC. Here we explore metastable early d0 transition metal peroxide molecules that undergo stabilization via multiple routes, including DAC. Specifically here, we describe via experiment and computation the mechanistic conversion of A3V(O2)4 (tetraperoxovanadate, A = K, Rb, Cs) to first a monocarbonate VO(O2)2(CO3)3-, and ultimately HKCO3 plus KVO4. Single crystal X-ray structures of rubidium and cesium tetraperoxovanadate are reported here for the first time, likely prior-challenged by instability. Infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), 51V solid state NMR (nuclear magnetic resonance), tandem thermogravimetry-mass spectrometry (TGA-MS) along with calculations (DFT, density functional theory) all converge on mechanisms of CO2 capture and release that involve the vanadium centre, despite the end product of a 300 days study being bicarbonate and metavanadate. Electron Paramagnetic Resonance (EPR) Spectroscopy along with a wet chemical assay and computational studies evidence the presense of ∼5% adventitous superoxide, likely formed by peroxide reduction of vanadium, which also stabilizes via the reaction with CO2. The alkalis have a profound effect on the stability of the peroxovanadate compounds, stability trending K > Rb > Cs. While this translates to more rapid CO2 capture with heavier alkalis, it does not necessarily lead to capture of more CO2. All compounds capture approximately two equivalents CO2 per vanadium centre. We cannot yet explain the reactivity trend of the alkali peroxovanadates, because any change in speciation of the alkalis from reactions to product is not quantifiable. This study sets the stage for understanding and implementing transition metal peroxide species, including peroxide-functionalized metal oxides, for DAC.
Collapse
Affiliation(s)
| | - Zhiwei Mao
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Jacob S Hirschi
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Taylor Linsday
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Karlie Bach
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Eric D Walter
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory Richland WA 99352 USA
| | | | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - May Nyman
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
7
|
Guo Y, Bolongaro V, Hatton TA. Scalable Biomass-Derived Hydrogels for Sustainable Carbon Dioxide Capture. NANO LETTERS 2023; 23:9697-9703. [PMID: 37555653 DOI: 10.1021/acs.nanolett.3c02157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Carbon capture and sequestration are promising emissions mitigation technologies to counteract ongoing climate change. The aqueous amine scrubbing process is industrially mature but suffers from low energy efficiency and inferior stability. Solid sorbent-based carbon capture systems present a potentially advantageous alternative. However, practical implementation remains challenging due to limited CO2 uptake at dilute concentrations and difficulty in regeneration. Here, we develop sustainable carbon-capture hydrogels (SCCH) with an excellent CO2 uptake of 3.6 mmol g-1 (400 ppm) at room temperature. The biomass gel network consists of konjac glucomannan and hydroxypropyl cellulose, facilitating hierarchically porous structures for active CO2 transport and capture. Precaptured moisture significantly enhances CO2 binding by forming water molecule-stabilized zwitterions to improve the amine utilization efficiency. The thermoresponsive SCCH exhibits a notable advantage of low regeneration temperature at 60 °C, enabling solar-powered regeneration and highlighting the potential for sustainable carbon capture to meet global decarbonization targets.
Collapse
Affiliation(s)
- Youhong Guo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vittoria Bolongaro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Yao S, Li Z, Liu Z, Geng X, Dai L, Wang Y. CuCl 2-Activated Sustainable Microporous Carbons with Tailorable Multiscale Pores for Effective CO 2 Capture. ACS OMEGA 2023; 8:41641-41648. [PMID: 37970063 PMCID: PMC10634235 DOI: 10.1021/acsomega.3c05842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Porosity is the key factor in determining the CO2 capture capacity for porous carbon-based adsorbents, especially narrow micropores of less than 1.0 nm. Unfortunately, this desired feature is still a great challenge to tailor micropores by an effective, low-corrosion, and environmentally friendly activating agent. Herein, we reported a suitable dynamic porogen of CuCl2 to engineer microporous carbons rich in narrow micropores of <1.0 nm for solving the above problem. The porosity can be easily tuned by varying the concentration of the CuCl2 porogen. The resultant porous carbons exhibited a multiscale micropore size, high micropore volume, and suitable surface nitrogen doping content, especially high-proportioned ultromicropores of <0.7 nm. As adsorbents for capturing CO2, the obtained microporous carbons possess satisfactory CO2 uptake, moderate heat of CO2 adsorption, reasonable CO2/N2 selectivity, and easy regeneration. Our work proposes an alternative way to design porous carbon-based adsorbents for efficiently capturing CO2 from the postcombustion flue gases. More importantly, this work opens up an almost-zero cost and industrially friendly route to convert biowaste into high-added-value adsorbents for CO2 capture in an industrial practical application.
Collapse
Affiliation(s)
| | | | - Zhen Liu
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Xiaodong Geng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Li Dai
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| |
Collapse
|
9
|
Bingel L, Yu Z, Sholl DS, Walton KS. Does Mixed Linker-Induced Surface Heterogeneity Impact the Accuracy of IAST Predictions in UiO-66-NH 2? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:20881-20889. [PMID: 37908744 PMCID: PMC10614300 DOI: 10.1021/acs.jpcc.3c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Indexed: 11/02/2023]
Abstract
To move toward more energy-efficient adsorption-based processes, there is a need for accurate multicomponent data under realistic conditions. While the Ideal Adsorbed Solution Theory (IAST) has been established as the preferred prediction method due to its simplicity, limitations and inaccuracies for less ideal adsorption systems have been reported. Here, we use amine-functionalized derivatives of the UiO-66 structure to change the extent of homogeneity of the internal surface toward the adsorption of the two probe molecules carbon dioxide and ethylene. Although it might seem plausible that more functional groups lead to more heterogeneity and, thus, less accurate predictions by IAST, we find a mixed-linker system with increased heterogeneity in terms of added adsorption sites where IAST predictions and experimental loadings agree exceptionally well. We show that incorporating uncertainty analysis into predictions with IAST is important for assessing the accuracy of these predictions. Energetic investigations combined with Grand Canonical Monte Carlo simulations reveal almost homogeneous carbon dioxide but heterogeneous ethylene adsorption in the mixed-linker material, resulting in local, almost pure phases of the individual components.
Collapse
Affiliation(s)
- Lukas
W. Bingel
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenzi Yu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Krista S. Walton
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Qiu L, Peng L, Moitra D, Liu H, Fu Y, Dong Z, Hu W, Lei M, Jiang DE, Lin H, Hu J, McGarry KA, Popovs I, Li M, Ivanov AS, Yang Z, Dai S. Harnessing the Hybridization of a Metal-Organic Framework and Superbase-Derived Ionic Liquid for High-Performance Direct Air Capture of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302708. [PMID: 37317018 DOI: 10.1002/smll.202302708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Direct air capture (DAC) of CO2 has emerged as the most promising "negative carbon emission" technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g-1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2 , indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Debabrata Moitra
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Yuqing Fu
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Zhun Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenda Hu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ming Lei
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Hongfei Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jianzhi Hu
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kathryn A McGarry
- Department of Chemistry, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
11
|
Chen H, Wang B, Zhang B, Chen J, Gui J, Shi X, Yan W, Li J, Li L. Deep removal of trace C 2H 2 and CO 2 from C 2H 4 by using customized potassium-exchange mordenite. Chem Sci 2023; 14:7068-7075. [PMID: 37389266 PMCID: PMC10306095 DOI: 10.1039/d3sc02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Adsorptive separation using porous materials is a promising approach for separating alkynes/olefins due to its energy efficiency, while the deep removal of trace amounts of C2H2 and CO2 from C2H4 is still very challenging for a commercial adsorbent. Herein, we report a low-cost inorganic metal cation-mediated mordenite (MOR) zeolite with the specific location and distribution of K+ cations acting as a goalkeeper for accurately controlling diffusion channels, as evidence of the experimental and simulation results. Deep purification of C2H4 from ternary CO2/C2H2/C2H4 mixtures was first realized on K-MOR with exceptional results, achieving a remarkable polymer-grade C2H4 productivity of 1742 L kg-1 for the CO2/C2H2/C2H4 mixture. Our approach which only involves adjusting the equilibrium ions, is both promising and cost-effective, and opens up new possibilities for the use of zeolites in the industrial light hydrocarbon adsorption and purification process.
Collapse
Affiliation(s)
- Hongwei Chen
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 China
| | - Binyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Bin Zhang
- College of Chemistry, Taiyuan University of Technology Taiyuan 030024 China
| | - Jiuhong Chen
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 China
| | - Jiabao Gui
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 China
| | - Xiufeng Shi
- College of Chemistry, Taiyuan University of Technology Taiyuan 030024 China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Jinping Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 China
| | - Libo Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
12
|
Short G, Burentugs E, Proaño L, Moon HJ, Rim G, Nezam I, Korde A, Nair S, Jones CW. Single-Walled Zeolitic Nanotubes: Advantaged Supports for Poly(ethylenimine) in CO 2 Separation from Simulated Air and Flue Gas. JACS AU 2023; 3:62-69. [PMID: 36711098 PMCID: PMC9875257 DOI: 10.1021/jacsau.2c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Previous research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO2 from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines. Here, we deploy our newly discovered zeolite nanotubes, a first-of-their-kind quasi-1D hierarchical zeolite, as a substrate for poly(ethylenimine) (PEI) for CO2 capture from dilute feeds. PEI is impregnated into the zeolite at specific organic loadings. Thermogravimetric analysis and porosity measurements are obtained to determine organic loading, pore filling, and surface area of the supported PEI prior to CO2 capture studies. MCM-41 with comparable pore size and surface area is also impregnated with PEI to provide a benchmark material that allows for insight into the role of the zeolite nanotube intrawall micropores on CO2 uptake rates and capacities. Over a range of PEI loadings, from 20 to 70 w/w%, the zeolite allows for increased CO2 capture capacity over the mesoporous silica by ∼25%. Additionally, uptake kinetics for nanotube-supported PEI are roughly 4 times faster than that of a comparable PEI impregnated in SBA-15. It is anticipated that this new zeolite will offer numerous opportunities for engineering additional advantaged reaction and separation processes.
Collapse
|
13
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|