1
|
Rozman J, Yeomans JM. Cell Sorting in an Active Nematic Vertex Model. PHYSICAL REVIEW LETTERS 2024; 133:248401. [PMID: 39750371 DOI: 10.1103/physrevlett.133.248401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025]
Abstract
We study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting. We interpret this by showing that extensile activity renders the system motile, enabling cells to undergo neighbor exchanges. Contractile cells that come into contact as a result are then more likely to stay connected due to an effective attraction arising from contractile activity.
Collapse
|
2
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Mukenhirn M, Wang CH, Guyomar T, Bovyn MJ, Staddon MF, van der Veen RE, Maraspini R, Lu L, Martin-Lemaitre C, Sano M, Lehmann M, Hiraiwa T, Riveline D, Honigmann A. Tight junctions control lumen morphology via hydrostatic pressure and junctional tension. Dev Cell 2024; 59:2866-2881.e8. [PMID: 39137775 DOI: 10.1016/j.devcel.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Formation of fluid-filled lumina by epithelial tissues is essential for organ development. How cells control the hydraulic and cortical forces to control lumen morphology is not well understood. Here, we quantified the mechanical role of tight junctions in lumen formation using MDCK-II cysts. We found that the paracellular ion barrier formed by claudin receptors is not required for the hydraulic inflation of a lumen. However, the depletion of the zonula occludens scaffold resulted in lumen collapse and folding of apical membranes. Combining quantitative measurements of hydrostatic lumen pressure and junctional tension with modeling enabled us to explain lumen morphologies from the pressure-tension force balance. Tight junctions promote lumen inflation by decreasing cortical tension via the inhibition of myosin. In addition, our results suggest that excess apical area contributes to lumen opening. Overall, we provide a mechanical understanding of how epithelial cells use tight junctions to modulate tissue and lumen shape.
Collapse
Affiliation(s)
- Markus Mukenhirn
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany
| | - Chen-Ho Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany
| | - Tristan Guyomar
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; Inserm, UMR-S 1258, 67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Matthew J Bovyn
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael F Staddon
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | | | - Riccardo Maraspini
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany
| | - Linjie Lu
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; Inserm, UMR-S 1258, 67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Cecilie Martin-Lemaitre
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Universal Biology Institute, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daniel Riveline
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; Inserm, UMR-S 1258, 67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.
| | - Alf Honigmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
4
|
Jipp M, Wagner BD, Egbringhoff L, Teichmann A, Rübeling A, Nieschwitz P, Honigmann A, Chizhik A, Oswald TA, Janshoff A. Cell-substrate distance fluctuations of confluent cells enable fast and coherent collective migration. Cell Rep 2024; 43:114553. [PMID: 39150846 DOI: 10.1016/j.celrep.2024.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Collective cell migration is an emergent phenomenon, with long-range cell-cell communication influenced by various factors, including transmission of forces, viscoelasticity of individual cells, substrate interactions, and mechanotransduction. We investigate how alterations in cell-substrate distance fluctuations, cell-substrate adhesion, and traction forces impact the average velocity and temporal-spatial correlation of confluent monolayers formed by either wild-type (WT) MDCKII cells or zonula occludens (ZO)-1/2-depleted MDCKII cells (double knockdown [dKD]) representing highly contractile cells. The data indicate that confluent dKD monolayers exhibit decreased average velocity compared to less contractile WT cells concomitant with increased substrate adhesion, reduced traction forces, a more compact shape, diminished cell-cell interactions, and reduced cell-substrate distance fluctuations. Depletion of basal actin and myosin further supports the notion that short-range cell-substrate interactions, particularly fluctuations driven by basal actomyosin, significantly influence the migration speed of the monolayer on a larger length scale.
Collapse
Affiliation(s)
- Marcel Jipp
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Bente D Wagner
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Lisa Egbringhoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Andreas Teichmann
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Angela Rübeling
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Paul Nieschwitz
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alf Honigmann
- Biotechnology Center, Technische Universität Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alexey Chizhik
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tabea A Oswald
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Bhattacharyya S, Yeomans JM. Phase ordering in binary mixtures of active nematic fluids. Phys Rev E 2024; 110:024607. [PMID: 39294938 DOI: 10.1103/physreve.110.024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024]
Abstract
We use a continuum, two-fluid approach to study a mixture of two active nematic fluids. Even in the absence of thermodynamically driven ordering, for mixtures of different activities we observe turbulent microphase separation, where domains form and disintegrate chaotically in an active turbulent background. This is a weak effect if there is no elastic nematic alignment between the two fluid components, but is greatly enhanced in the presence of an elastic alignment or substrate friction. We interpret the results in terms of relative flows between the two species which result from active anchoring at concentration gradients. Our results may have relevance in interpreting epithelial cell sorting and the dynamics of multispecies bacterial colonies.
Collapse
|
6
|
Graham JN, Zhang G, Yeomans JM. Cell sorting by active forces in a phase-field model of cell monolayers. SOFT MATTER 2024; 20:2955-2960. [PMID: 38469688 DOI: 10.1039/d3sm01033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cell sorting, the segregation of cells with different properties into distinct domains, is a key phenomenon in biological processes such as embryogenesis. We use a phase-field model of a confluent cell layer to study the role of activity in cell sorting. We find that a mixture of cells with extensile or contractile dipolar activity, and which are identical apart from their activity, quickly sort into small, elongated patches which then grow slowly in time. We interpret the sorting as driven by the different diffusivity of the extensile and contractile cells, mirroring the ordering of Brownian particles connected to different hot and cold thermostats. We check that the free energy is not changed by either partial or complete sorting, thus confirming that activity can be responsible for the ordering even in the absence of thermodynamic mechanisms.
Collapse
Affiliation(s)
- James N Graham
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford, OX1 3PU, UK.
| | - Guanming Zhang
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York 10003, USA
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford, OX1 3PU, UK.
| |
Collapse
|
7
|
Valdivia A, Cowan M, Cardenas H, Isac AM, Zhao G, Huang H, Matei D. E2F1 mediates competition, proliferation and response to cisplatin in cohabitating resistant and sensitive ovarian cancer cells. Front Oncol 2024; 14:1304691. [PMID: 38344207 PMCID: PMC10853425 DOI: 10.3389/fonc.2024.1304691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background Tumor heterogeneity is one of the key factors leading to chemo-resistance relapse. It remains unknown how resistant cancer cells influence sensitive cells during cohabitation and growth within a heterogenous tumors. The goal of our study was to identify driving factors that mediate the interactions between resistant and sensitive cancer cells and to determine the effects of cohabitation on both phenotypes. Methods We used isogenic ovarian cancer (OC) cell lines pairs, sensitive and resistant to platinum: OVCAR5 vs. OVCAR5 CisR and PE01 vs. PE04, respectively, to perform long term direct culture and to study the phenotypical changes of the interaction of these cells. Results Long term direct co-culture of sensitive and resistant OC cells promoted proliferation (p < 0.001) of sensitive cells and increased the proportion of cells in the G1 and S cell cycle phase in both PE01 and OVCAR5 cells. Direct co-culture led to a decrease in the IC50 to platinum in the cisplatin-sensitive cells (5.92 µM to 2.79 µM for PE01, and from 2.05 µM to 1.51 µM for OVCAR5). RNAseq analysis of co-cultured cells showed enrichment of Cell Cycle Control, Cyclins and Cell Cycle Regulation pathways. The transcription factor E2F1 was predicted as the main effector responsible for the transcriptomic changes in sensitive cells. Western blot and qRT-PCR confirmed upregulation of E2F1 in co-cultured vs monoculture. Furthermore, an E2F1 inhibitor reverted the increase in proliferation rate induced by co-culture to baseline levels. Conclusion Our data suggest that long term cohabitation of chemo-sensitive and -resistant cancer cells drive sensitive cells to a higher proliferative state, more responsive to platinum. Our results reveal an unexpected effect caused by direct interactions between cancer cells with different proliferative rates and levels of platinum resistance, modelling competition between cells in heterogeneous tumors.
Collapse
Affiliation(s)
- Andres Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Matthew Cowan
- Department of Obstetrics & Gynecology and Women’s Health, Montefiore Medical Center, Bronx, NY, United States
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ana Maria Isac
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Bhaskar D, Zhang WY, Volkening A, Sandstede B, Wong IY. Topological data analysis of spatial patterning in heterogeneous cell populations: clustering and sorting with varying cell-cell adhesion. NPJ Syst Biol Appl 2023; 9:43. [PMID: 37709793 PMCID: PMC10502054 DOI: 10.1038/s41540-023-00302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains challenging, particularly given their structural diversity and biological variability. Recent developments based on topological data analysis are intriguing to reveal similarities in tissue architecture, but these methods remain computationally expensive. In this article, we show that multicellular patterns organized from two interacting cell types can be efficiently represented through persistence images. Our optimized combination of dimensionality reduction via autoencoders, combined with hierarchical clustering, achieved high classification accuracy for simulations with constant cell numbers. We further demonstrate that persistence images can be normalized to improve classification for simulations with varying cell numbers due to proliferation. Finally, we systematically consider the importance of incorporating different topological features as well as information about each cell type to improve classification accuracy. We envision that topological machine learning based on persistence images will enable versatile and robust classification of complex tissue architectures that occur in development and disease.
Collapse
Affiliation(s)
- Dhananjay Bhaskar
- School of Engineering, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
- Data Science Institute, Brown University, Providence, RI, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - William Y Zhang
- Data Science Institute, Brown University, Providence, RI, USA
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Björn Sandstede
- Data Science Institute, Brown University, Providence, RI, USA
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Ian Y Wong
- School of Engineering, Brown University, Providence, RI, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- Data Science Institute, Brown University, Providence, RI, USA.
- Legorreta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|