1
|
Liang QJ, Long QQ, Tian FQ, Long XD. Progress in research of polo-like kinase 1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2024; 32:652-659. [DOI: 10.11569/wcjd.v32.i9.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a protein kinase that regulates the cell cycle, and it has been found that PLK1 mediates the regulation of signaling pathways associated with hepatocellular carcinoma (HCC) development, thereby affecting the biological behaviors of hepatic tumor cells such as cell proliferation, migration, and invasion. Therefore, PLK1 may be a very promising target for the treatment of HCC. This article reviews the relevant signaling pathways of PLK1 in HCC development and PLK1 inhibitors in the treatment of HCC.
Collapse
Affiliation(s)
- Qiu-Ju Liang
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qin-Qin Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Feng-Qin Tian
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Zeba A, Rajalingam A, Sekar K, Ganjiwale A. Machine learning-based gene expression biomarkers to distinguish Zika and Dengue virus infections: implications for diagnosis. Virusdisease 2024; 35:446-461. [PMID: 39464736 PMCID: PMC11502647 DOI: 10.1007/s13337-024-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/19/2024] [Indexed: 10/29/2024] Open
Abstract
Zika virus (ZIKV) and Dengue virus (DENV) infections cause severe disease in humans and are significant socio-economic burden worldwide. These flavivirus infections are difficult to diagnose serologically due to antigenic overlap. The phylogenetic analysis shows that ZIKV clusters with DENVs at a higher node of the phylogenetic tree with significant genomic and structural similarity. Our study aims to identify gene biomarkers for the classification of Dengue and Zika viral infections using machine learning algorithms and bioinformatics analysis. The gene expression count matrix for single-cell RNA sequencing dataset GSE110496 was analyzed using binary classifiers, namely Logistic regression, Support Vector Machines, Random Forest, and Decision trees. The GSE110496 dataset represents a unique study of the transcriptional and translational dynamics of DENV and ZIKV infections at 4-, 12-, 24-, and 48-h time points for human hepatoma (Huh7) cells. Out of which 24-h time point has been analyzed in this study, at the optimal threshold of viral molecules. Feature selection was performed using two different approaches Random Forest Classifier (RFC) for gene ranking and Recursive Feature Elimination (RFE). Out of which RFE, showed more accuracy and precision. The classification accuracy of 89.4% and the precision of 90% were obtained using selected 10 gene features. SCY1 Like Pseudokinase 3 (SCYL3), Chromosome 1 Open Reading Frame 112 (C1orf112), Complement factor H (CFH), Heme-binding protein 1 (HEBP1), Cadherin 1 (CDH1), Nibrin (NBN), Histone deacetylase 5 (HDAC5), nuclear receptor subfamily 0, group B, member 2 (NR0B2), Annexin A9 (ANXA9) and Alcohol dehydrogenase 6 (ADH6) are the proposed gene biomarkers in this study. The functional analysis of the reported biomarkers was performed using KEGG and GO with the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt). The relationship of the selected biomarkers with DENV and ZIKV infections analyzed using a gene-gene interaction network showed important interactions for viral entry, replication, translation, and metabolic pathways. These biomarkers are potential diagnostic markers for DENV and ZIKV infections based on machine learning analysis and need further experimental validation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00885-8.
Collapse
Affiliation(s)
- Ayesha Zeba
- Department of Life Science, Bangalore University, Bangalore, Karnataka 560056 India
| | - Aruna Rajalingam
- Department of Life Science, Bangalore University, Bangalore, Karnataka 560056 India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-Computing, Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Anjali Ganjiwale
- Department of Life Science, Bangalore University, Bangalore, Karnataka 560056 India
| |
Collapse
|
3
|
Lin S, Shen ZY, Wang MD, Zhou XM, Xu T, Jiao XH, Wang LL, Guo XJ, Wu P. Lnc557 promotes Bombyx mori nucleopolyhedrovirus replication by interacting with BmELAVL1 to enhance its stability and expression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106046. [PMID: 39277373 DOI: 10.1016/j.pestbp.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericultural industry. Currently, accumulated studies showed that long non-coding RNAs (lncRNAs) play important roles in the genesis and progression of various viruses and host-pathogens interactions. However, the functions and regulatory mechanisms of lncRNAs in insect-virus interaction are still limited. In this study, transcriptome sequencing and ribosome profiling sequencing (Ribo-seq) were performed in the BmNPV-infected midgut and control tissue, and a total of 9 differentially expressed (DE) lncRNAs and 27 small ORFs (sORFs) with micropeptide coding potential were identified. Among them, lncRNA XR_001139971.3 (lnc557) is verified to be significantly up-regulated upon BmNPV infection and may have the potential to encode a small peptide (ORF-674). The subcellular localization experiment showed that lnc557 was expressed in the cytoplasm. Overexpression of lnc557 promotes BmNPV replication and vice versa. By combining RNA pull-down, mass spectrometry, protein truncation and RNA immunoprecipitation (RIP) assays, we confirmed that lnc557 can bind to the RRM-5 domain of BmELAVL1 protein. Subsequently, we found that lnc557 could promote the expression of BmELAVL1 by enhancing the stability of BmELAVL1. Further, enhancing the expression of BmELAVL1 can promote the proliferation of BmNPV, while knockdown shows the opposite effect. Our data suggest that lnc557-mediated BmELAVL1 expression enhancement could play a positive role in BmNPV replication, which will provide a new insight into the molecular mechanism of interaction between Bombyx mori and virus.
Collapse
Affiliation(s)
- Su Lin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhen-Yu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Meng-Dong Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xue-Min Zhou
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tao Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xin-Hao Jiao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lu-Lai Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xi-Jie Guo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
4
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
5
|
Feng C, Tian Q, Tang X, Yu J, Li H, Geng C, Xu L. microRNA-9a-5p disrupts the ELAVL1/VEGF axis to alleviate traumatic brain injury. Exp Neurol 2024; 375:114721. [PMID: 38342180 DOI: 10.1016/j.expneurol.2024.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Plasma microRNA (miR)-9 has been identified as a promising diagnostic biomarker for traumatic brain injury (TBI). This study aims to investigate the possible role and mechanisms of miR-9a-5p affecting TBI. Microarray-based gene expression profiling of TBI was used for screening differentially expressed miRNAs and genes. TBI rat models were established. miR-9a-5p, ELAVL1 and VEGF expression in the brain tissue of TBI rats was detected. The relationship among miR-9a-5p, ELAVL1 and VEGF was tested. TBI modeled rats were injected with miR-9a-5p-, ELAVL1 or VEGF-related sequences to identify their effects on TBI. miR-9a-5p was poorly expressed in the brain tissue of rats with TBI. ELAVL1 was a downstream target gene of miR-9a-5p, which could negatively regulate its expression. Enforced miR-9a-5p expression prevented brain tissue damage in TBI rats by targeting ELAVL1. Meanwhile, ELAVL1 could increase the expression of VEGF, which was highly expressed in the brain tissue of rats with TBI. In addition, ectopically expressed miR-9a-5p alleviated brain tissue damage in TBI rats by downregulating the ELAVL1/VEGF axis. Overall, miR-9a-5p can potentially reduce brain tissue damage in TBI rats by targeting ELAVL1 and down-regulating VEGF expression.
Collapse
Affiliation(s)
- Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Qiuyan Tian
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Xiaojuan Tang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Jian Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Hong Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Changxing Geng
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, PR China.
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, PR China.
| |
Collapse
|
6
|
Huang X, Liu W. Role of microRNAs in host defense against porcine reproductive and respiratory syndrome virus infection: a hidden front line. Front Immunol 2024; 15:1376958. [PMID: 38590524 PMCID: PMC10999632 DOI: 10.3389/fimmu.2024.1376958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most globally devastating viruses threatening the swine industry worldwide. Substantial advancements have been achieved in recent years towards comprehending the pathogenesis of PRRSV infection and the host response, involving both innate and adaptive immune responses. Not only a multitude of host proteins actively participate in intricate interactions with viral proteins, but microRNAs (miRNAs) also play a pivotal role in the host response to PRRSV infection. If a PRRSV-host interaction at the protein level is conceptualized as the front line of the battle between pathogens and host cells, then their fight at the RNA level resembles the hidden front line. miRNAs are endogenous small non-coding RNAs of approximately 20-25 nucleotides (nt) that primarily regulate the degradation or translation inhibition of target genes by binding to the 3'-untranslated regions (UTRs). Insights into the roles played by viral proteins and miRNAs in the host response can enhance our comprehensive understanding of the pathogenesis of PRRSV infection. The intricate interplay between viral proteins and cellular targets during PRRSV infection has been extensively explored. This review predominantly centers on the contemporary understanding of the host response to PRRSV infection at the RNA level, in particular, focusing on the twenty-six miRNAs that affect viral replication and the innate immune response.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
7
|
Zheng Y, Wang M, Yin J, Duan Y, Wu C, Xu Z, Bu Y, Wang J, Chen Q, Zhu G, Zhao K, Zhang L, Hua R, Xu Y, Hu X, Cheng X, Xia Y. Hepatitis B virus RNAs co-opt ELAVL1 for stabilization and CRM1-dependent nuclear export. PLoS Pathog 2024; 20:e1011999. [PMID: 38306394 PMCID: PMC10866535 DOI: 10.1371/journal.ppat.1011999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Hepatitis B virus (HBV) chronically infects 296 million people worldwide, posing a major global health threat. Export of HBV RNAs from the nucleus to the cytoplasm is indispensable for viral protein translation and genome replication, however the mechanisms regulating this critical process remain largely elusive. Here, we identify a key host factor embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) that binds HBV RNAs and controls their nuclear export. Using an unbiased quantitative proteomics screen, we demonstrate direct binding of ELAVL1 to the HBV pregenomic RNA (pgRNA). ELAVL1 knockdown inhibits HBV RNAs posttranscriptional regulation and suppresses viral replication. Further mechanistic studies reveal ELAVL1 recruits the nuclear export receptor CRM1 through ANP32A and ANP32B to transport HBV RNAs to the cytoplasm via specific AU-rich elements, which can be targeted by a compound CMLD-2. Moreover, ELAVL1 protects HBV RNAs from DIS3+RRP6+ RNA exosome mediated nuclear RNA degradation. Notably, we find HBV core protein is dispensable for HBV RNA-CRM1 interaction and nuclear export. Our results unveil ELAVL1 as a crucial host factor that regulates HBV RNAs stability and trafficking. By orchestrating viral RNA nuclear export, ELAVL1 is indispensable for the HBV life cycle. Our study highlights a virus-host interaction that may be exploited as a new therapeutic target against chronic hepatitis B.
Collapse
Affiliation(s)
- Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
| | - Mengfei Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jiatong Yin
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Chuanjian Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yanan Bu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Quan Chen
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Guoguo Zhu
- Department of Emergency, General Hospital of Central Theater Command of People’s Liberation Army of China, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Rong Hua
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yanping Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiyu Hu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| |
Collapse
|
8
|
Yin J, Seo Y, Rhim J, Jin X, Kim TH, Kim SS, Hong JH, Gwak HS, Yoo H, Park JB, Kim JH. Cross-talk between PARN and EGFR-STAT3 Signaling Facilitates Self-Renewal and Proliferation of Glioblastoma Stem Cells. Cancer Res 2023; 83:3693-3709. [PMID: 37747775 DOI: 10.1158/0008-5472.can-22-3965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Glioblastoma is the most common type of malignant primary brain tumor and displays highly aggressive and heterogeneous phenotypes. The transcription factor STAT3 has been reported to play a key role in glioblastoma malignancy. Thus, discovering targets and functional downstream networks regulated by STAT3 that govern glioblastoma pathogenesis may lead to improved treatment strategies. In this study, we identified that poly(A)-specific ribonuclease (PARN), a key modulator of RNA metabolism, activates EGFR-STAT3 signaling to support glioblastoma stem cells (GSC). Functional integrative analysis of STAT3 found PARN as the top-scoring transcriptional target involved in RNA processing in patients with glioblastoma, and PARN expression was strongly correlated with poor patient survival and elevated malignancy. PARN positively regulated self-renewal and proliferation of GSCs through its 3'-5' exoribonuclease activity. EGFR was identified as a clinically relevant target of PARN in GSCs. PARN positively modulated EGFR by negatively regulating the EGFR-targeting miRNA miR-7, and increased EGFR expression created a positive feedback loop to increase STAT3 activation. PARN depletion in GSCs reduced infiltration and prolonged survival in orthotopic brain tumor xenografts; similar results were observed using siRNA nanocapsule-mediated PARN targeting. Pharmacological targeting of STAT3 also confirmed PARN regulation by STAT3 signaling. In sum, these results suggest that a STAT3-PARN regulatory network plays a pivotal role in tumor progression and thus may represent a target for glioblastoma therapeutics. SIGNIFICANCE A positive feedback loop comprising PARN and EGFR-STAT3 signaling supports self-renewal and proliferation of glioblastoma stem cells to drive tumor progression and can be targeted in glioblastoma therapeutics.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yoona Seo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Jiho Rhim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Xiong Jin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Tae Hoon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
9
|
Monfort-Vengut A, de Cárcer G. Lights and Shadows on the Cancer Multi-Target Inhibitor Rigosertib (ON-01910.Na). Pharmaceutics 2023; 15:pharmaceutics15041232. [PMID: 37111716 PMCID: PMC10145883 DOI: 10.3390/pharmaceutics15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Rigosertib (ON-01910.Na) is a small-molecule member of the novel synthetic benzyl-styryl-sulfonate family. It is currently in phase III clinical trials for several myelodysplastic syndromes and leukemias and is therefore close to clinical translation. The clinical progress of rigosertib has been hampered by a lack of understanding of its mechanism of action, as it is currently considered a multi-target inhibitor. Rigosertib was first described as an inhibitor of the mitotic master regulator Polo-like kinase 1 (Plk1). However, in recent years, some studies have shown that rigosertib may also interact with the PI3K/Akt pathway, act as a Ras-Raf binding mimetic (altering the Ras signaling pathway), as a microtubule destabilizing agent, or as an activator of a stress-induced phospho-regulatory circuit that ultimately hyperphosphorylates and inactivates Ras signaling effectors. Understanding the mechanism of action of rigosertib has potential clinical implications worth exploring, as it may help to tailor cancer therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Ana Monfort-Vengut
- Cell Cycle and Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM) CSIC-UAM, 28029 Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM) CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
10
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
11
|
Subversion of a protein-microRNA signaling pathway by hepatitis C virus. Proc Natl Acad Sci U S A 2023; 120:e2220406120. [PMID: 36649406 PMCID: PMC9942813 DOI: 10.1073/pnas.2220406120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|