1
|
Tsuboi M, Gaboriau T, Latrille T. An introduction to the special issue: inferring macroevolutionary patterns and processes from microevolutionary mechanisms. J Evol Biol 2024; 37:1395-1401. [PMID: 39656639 DOI: 10.1093/jeb/voae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024]
Affiliation(s)
| | - Théo Gaboriau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Thibault Latrille
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Latrille T, Bastian M, Gaboriau T, Salamin N. Detecting diversifying selection for a trait from within and between-species genotypes and phenotypes. J Evol Biol 2024; 37:1538-1550. [PMID: 38991560 DOI: 10.1093/jeb/voae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
To quantify selection acting on a trait, methods have been developed using either within or between-species variation. However, methods using within-species variation do not integrate the changes at the macro-evolutionary scale. Conversely, current methods using between-species variation usually discard within-species variation, thus not accounting for processes at the micro-evolutionary scale. The main goal of this study is to define a neutrality index for a quantitative trait, by combining within- and between-species variation. This neutrality index integrates nucleotide polymorphism and divergence for normalizing trait variation. As such, it does not require estimation of population size nor of time of speciation for normalization. Our index can be used to seek deviation from the null model of neutral evolution, and test for diversifying selection. Applied to brain mass and body mass at the mammalian scale, we show that brain mass is under diversifying selection. Finally, we show that our test is not sensitive to the assumption that population sizes, mutation rates and generation time are constant across the phylogeny, and automatically adjust for it.
Collapse
Affiliation(s)
- T Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - M Bastian
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | - T Gaboriau
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - N Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Latrille T, Joseph J, Hartasánchez DA, Salamin N. Estimating the proportion of beneficial mutations that are not adaptive in mammals. PLoS Genet 2024; 20:e1011536. [PMID: 39724093 PMCID: PMC11709321 DOI: 10.1371/journal.pgen.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment. In contrast to adaptive mutations, these beneficial non-adaptive mutations can be predicted if the underlying fitness landscape is stable and known. The contribution of such non-adaptive mutations to molecular evolution has been widely neglected mainly because their detection is very challenging. We have here reconstructed protein-coding gene fitness landscapes shared between mammals, using mutation-selection models and a multi-species alignments across 87 mammals. These fitness landscapes have allowed us to predict the fitness effect of polymorphisms found in 28 mammalian populations. Using methods that quantify selection at the population level, we have confirmed that beneficial non-adaptive mutations are indeed positively selected in extant populations. Our work confirms that deleterious substitutions are accumulating in mammals and are being reverted, generating a balance in which genomes are damaged and restored simultaneously at different loci. We observe that beneficial non-adaptive mutations represent between 15% and 45% of all beneficial mutations in 24 of 28 populations analyzed, suggesting that a substantial part of ongoing positive selection is not driven solely by adaptation to environmental change in mammals.
Collapse
Affiliation(s)
- Thibault Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Nicolas Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Harris M, Kim BY, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. Genetics 2024; 226:iyae019. [PMID: 38366786 PMCID: PMC10990427 DOI: 10.1093/genetics/iyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Allio R, Delsuc F, Belkhir K, Douzery EJP, Ranwez V, Scornavacca C. OrthoMaM v12: a database of curated single-copy ortholog alignments and trees to study mammalian evolutionary genomics. Nucleic Acids Res 2024; 52:D529-D535. [PMID: 37843103 PMCID: PMC10767847 DOI: 10.1093/nar/gkad834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
To date, the databases built to gather information on gene orthology do not provide end-users with descriptors of the molecular evolution information and phylogenetic pattern of these orthologues. In this context, we developed OrthoMaM, a database of ORTHOlogous MAmmalian Markers describing the evolutionary dynamics of coding sequences in mammalian genomes. OrthoMaM version 12 includes 15,868 alignments of orthologous coding sequences (CDS) from the 190 complete mammalian genomes currently available. All annotations and 1-to-1 orthology assignments are based on NCBI. Orthologous CDS can be mined for potential informative markers at the different taxonomic levels of the mammalian tree. To this end, several evolutionary descriptors of DNA sequences are provided for querying purposes (e.g. base composition and relative substitution rate). The graphical web interface allows the user to easily browse and sort the results of combined queries. The corresponding multiple sequence alignments and ML trees, inferred using state-of-the art approaches, are available for download both at the nucleotide and amino acid levels. OrthoMaM v12 can be used by researchers interested either in reconstructing the phylogenetic relationships of mammalian taxa or in understanding the evolutionary dynamics of coding sequences in their genomes. OrthoMaM is available for browsing, querying and complete or filtered download at https://orthomam.mbb.cnrs.fr/.
Collapse
Affiliation(s)
- Rémi Allio
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ. Montpellier, Montpellier, 34988, France
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, 34095, France
| | - Frédéric Delsuc
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, 34095, France
| | - Khalid Belkhir
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, 34095, France
| | | | - Vincent Ranwez
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34398, France
| | | |
Collapse
|
6
|
Harris M, Kim B, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545888. [PMID: 38106201 PMCID: PMC10723260 DOI: 10.1101/2023.06.21.545888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The X chromosome, being hemizygous in males, is exposed one third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across six commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps, and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles California, United States of America
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nandita Garud
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Mathur S, Mason AJ, Bradburd GS, Gibbs HL. Functional genomic diversity is correlated with neutral genomic diversity in populations of an endangered rattlesnake. Proc Natl Acad Sci U S A 2023; 120:e2303043120. [PMID: 37844221 PMCID: PMC10614936 DOI: 10.1073/pnas.2303043120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Andrew J. Mason
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Gideon S. Bradburd
- Evolution and Behavior Program, Department of Integrative Biology, Ecology, Michigan State University, East Lansing, MI48824
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
| | - H. Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| |
Collapse
|