1
|
Li X, Wang Z, Chen J, Teng H, Yang X, Ye L, Jiang Y, Chen H, Cheng D, Lu Y. Molecular module for glucose production influences sex pheromone synthesis in Bactrocera dorsalis. Cell Rep 2024; 43:115030. [PMID: 39616614 DOI: 10.1016/j.celrep.2024.115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/13/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Some insects have evolved beneficial relationships with intestinal microbes for sex pheromone production to communicate with conspecifics effectively. However, it is not clear whether the sex pheromone synthesis activity of intestinal microbes can be controlled by the host, and the molecular mechanisms need to be further unraveled. In this study, we find that rectal gland Bacillus species of male Bactrocera dorsalis specifically produce sex pheromones in the evening, which is significantly associated with glucose levels. In vitro Bacillus culture assays show that glucose levels significantly influence the amount of sex pheromone produced. Comparative rectal gland transcriptome analysis reveals that the expressions of the alpha-galactosidase gene (GLA), a Bactrocera dorsalis transcription factor (BDTF), and a pigment-dispersing factor (PDF) are responsible for producing glucose. Our findings reveal that the PDF-BDTF-GLA module influences the intestinal-microbe-produced sex pheromone by regulating glucose levels and advance our understanding of interactions between insects and their intestinal microbes.
Collapse
Affiliation(s)
- Xinlian Li
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Zhenghao Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Jingxiang Chen
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Hebo Teng
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Xiaorui Yang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Long Ye
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Yanling Jiang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Huimin Chen
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
2
|
Xu L, Liu Y, Jiao Y, Zhong K, Li J, Guan Y, Wei H, Lou W, Ge J. Enzyme-free method for preparation of sturgeon extracts with antioxidant, hepatoprotective and immune-enhancing functions. Food Chem 2024; 459:140327. [PMID: 38986199 DOI: 10.1016/j.foodchem.2024.140327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Sturgeon has a long lifespan and slow evolutionary rate due to their powerful endogenous antioxidant system. This work aimed to assess the in vitro and in vivo antioxidant activity of sturgeon extracts from both muscle and roe. The extraction process without enzyme hydrolysis is not only simple, but also can produce extracts with better free radicals scavenging abilities than enzymatic hydrolysates in both cellular and in vivo experiments. Moreover, in mouse models with liver injury and immunosuppression treatment, the sturgeon extracts demonstrated strong hepatoprotective and immune-enhancing functions, comparable to vitamin C and ginseng extract supplements, which were attributed to abundant antioxidant peptides of the extracts. The 15 isolated peptides exhibited diverse free radical scavenging ability. Therefore, the sturgeon extracts showed high potential to be applied in food and biomedical industries.
Collapse
Affiliation(s)
- Lijun Xu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yu Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yi Jiao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kangrong Zhong
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Jinming Li
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Yongjian Guan
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Huaning Wei
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China.
| |
Collapse
|
3
|
Sauers LA, Bassingthwaite T, Sierra-Rivera B, Hampton KJ, Duffield KR, Gore H, Ramirez JL, Sadd BM. Membership robustness but structural change of the native gut microbiota of bumble bees upon systemic immune induction. Microbiol Spectr 2024; 12:e0086124. [PMID: 39373496 PMCID: PMC11536996 DOI: 10.1128/spectrum.00861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Understanding factors influencing the composition and maintenance of beneficial host-associated microbial communities is central to understanding their ecological, evolutionary, and health consequences for hosts. Host immunity is often implicated as a regulator of these microbiota, but immunity may also play a disruptive role, with responses to infection perturbing beneficial communities. Such effects may be more prominent from innate immune responses, with more rapid-acting and often non-specific components, compared to adaptive responses. We investigated how upregulation of antibacterial immunity in the bumble bee Bombus impatiens affects its core gut microbiota, testing the hypothesis that immunity-induced perturbation impacts the microbiota structure. Freshly emerged adult bees were fed a microbiota inoculum before receiving a non-pathogenic immune stimulation injection. We quantified microbial communities using 16S rRNA amplicon sequencing and targeted quantitative PCR. Coarse community membership shows apparent robustness, but we find that immune stimulation alters the abundance of two core community members, Gilliamella and Snodgrassella. Moreover, a positive association in communities between these bacteria is perturbed following a Gram-negative challenge. The observed changes in the gut microbial community are suggestive of immune response-induced dysbiosis, linking ecological interactions across levels between hosts, their pathogens, and their beneficial gut microbiota. The potential for collateral perturbation of the natural gut microbiota following an innate immune response may contribute to immune costs, shaping the evolutionary optimization of immune investment depending on the ecological context. IMPORTANCE Our work demonstrates how innate immunity may influence the host-associated microbiota. While previous work has demonstrated the role of adaptive immunity in regulating the microbiota, we show that stimulation of an innate immune response in bumble bees may disrupt the native gut microbial community by shifting individual abundances of some members and pairwise associations. This work builds upon previous work in bumble bees demonstrating factors determining microbe colonization of hosts and microbiota membership, implicating immune response-induced changes as a factor shaping these important gut communities. While some microbiota members appear unaffected, changes in others and the community overall suggests that collateral perturbation of the native gut microbiota upon an innate immune response may serve as an additional selective pressure that shapes the evolution of host innate immunity.
Collapse
Affiliation(s)
- Logan A. Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Toby Bassingthwaite
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Bryan Sierra-Rivera
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kylie J. Hampton
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Kristin R. Duffield
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Haley Gore
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - José L. Ramirez
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
4
|
Guo D, Li Z, Zhang Y, Zhang W, Wang C, Zhang DX, Liu F, Gao Z, Xu B, Wang N. The effect of lambda-cyhalothrin nanocapsules on the gut microbial communities and immune response of the bee elucidates the potential environmental impact of emerging nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135650. [PMID: 39216249 DOI: 10.1016/j.jhazmat.2024.135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Emerging nanopesticides are gradually gaining widespread application in agriculture due to their excellent properties, but their potential risks to pollinating insects are not fully understood. In this study, lambda-cyhalothrin nanocapsules (LC-NCs) were constructed by electrostatic self-assembly method with iron mineralization optimization, and their effects on bee gut microbial communities and host immune-related factors were investigated. Microbiome sequencing revealed that LC-NCs increase the diversity of gut microbial communities and reduce the complexity of network features, disrupting the overall structure of the microbial communities. In addition, LC-NCs also had systemic effects on the immune response of bees, including increased activity of SOD and CAT enzymes and expression of their genes, as well as downregulation of Defensin1. Furthermore, we noticed that the immune system of the host was activated simultaneously with a rise in the abundance of beneficial bacteria in the gut. Our research emphasizes the importance of both the host and gut microbiota of holobiont in revealing the potential risks of LC-NCs to environmental indicators of honey bees, and provides references for exploring the interactions between host-microbiota systems under exogenous stress. At the same time, we hope that more research can focus on the potential impacts of nanopesticides on the ecological environment.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wei Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
5
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
6
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
7
|
Wang X, Guan L, Wang T, Yu L, Wang S, He B, Tang B, Lu J. Comparative Transcriptomics Revealed Physalis floridana Rydb. Influences on the Immune System of the 28-Spotted Ladybird Beetle ( Henosepilachna vigintioctopunctata). PLANTS (BASEL, SWITZERLAND) 2024; 13:2711. [PMID: 39409581 PMCID: PMC11478385 DOI: 10.3390/plants13192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Physalis floridana Rydb., a member of the Solanaceae family, is renowned for its diverse secondary metabolites, including physalins and withanolides. The 28-spotted ladybird beetle (Henosepilachna vigintioctopunctata) is a notorious pest severely damaging Solanaceous crops. This study demonstrates that P. floridana Rydb. significantly impacts on the development and reproductive suppression of H. vigintioctopunctata. A comparative transcriptome analysis was performed by feeding H. vigintioctopunctata larvae on P. floridana Rydb., Solanum nigrum L., Solanum tuberosum L., and Solanum lycopersicum L. The results reveal that larvae fed on P. floridana Rydb. exhibit numerous differentially expressed genes, which are notably enriched in pathways related to energy metabolism, immunity, and detoxification. These functions and pathways are less enriched in larvae fed by other hosts. Weighted Gene Co-expression Network Analysis (WGCNA) indicates that feeding on P. floridana Rydb. influences the expression of specific genes involved in the Toll and IMD signaling pathways, impacting the immune system of H. vigintioctopunctata larvae. This study provides transcriptomic insights into larval responses to different diets and suggests that the effect of P. floridana Rydb. on the immune system of H. vigintioctopunctata is a key defense mechanism against herbivores.
Collapse
Affiliation(s)
- Xianzhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Liwen Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Tianwen Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Shuangle Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Jiangjie Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Cui L, Deng G, Wu J, Ding F, Wang W, Yu H, Song Z, Rui C, Han H, Yuan H. Fabrication of nanogels to improve the toxicity and persistence of cycloxaprid against Diaphorina citri, the vector of citrus huanglongbing. J Adv Res 2024:S2090-1232(24)00379-5. [PMID: 39245339 DOI: 10.1016/j.jare.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri. However, the poor solubility and stability had limited its development. OBJECTIVES In order to improve the insecticidal effect and stability to harsh climatic conditions of Cyc. METHODS Cyc was chosen as the representative pesticide, 4,4'-methylenebis (phenyl isocyanate), PEG-600 and n-butanol were used to prepare sustained-release nano-gelation particles (Cyc@NGs). RESULTS Cyc@NGs enhance the toxicity of Cyc more than 3 folds. Furthermore, Cyc@NGs showed excellent anti-rain and anti-UV capacity. After being exposed to ultraviolet light for 12 h, Cyc decreased by 100 %, while the insecticide content of Cyc@NGs only decreased by 25 %. Additionally, Cyc@NGs possessed better wettability on citrus leaves, mainly benefitting from its lower contact angle on citrus leaves. Moreover, FITC-labeled nano-gelation particles (FITC-NGs) exhibited high capability to penetrate and enrich in citrus leaf tissue and D. citri midgut. Consequently, NGs promoted the translocation and durability of insecticides, thereby, increasing the insecticidal activity. The results suggested that nano-gelation particle is a promising platform to deliver insecticides and Cyc@NGs would be the suitable candidate for the effective management of D. citri.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guiyun Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghong Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Haiyang Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changhui Rui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
9
|
Han B, Hu J, Yang C, Tang J, Du Y, Guo L, Wu Y, Zhang X, Zhou X. Lactobacillus Firm-5-derived succinate prevents honeybees from having diabetes-like symptoms. Proc Natl Acad Sci U S A 2024; 121:e2405410121. [PMID: 39186650 PMCID: PMC11388347 DOI: 10.1073/pnas.2405410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
The gut microbiome plays an important role in honeybee hormonal regulation and growth, but the underlying mechanisms are poorly understood. Here, we showed that the depletion of gut bacteria resulted in reduced expression of insulin-like peptide gene (ilp) in the head, accompanied by metabolic syndromes resembling those of Type 1 diabetes in humans: hyperglycemia, impaired lipid storage, and decreased metabolism. These symptoms were alleviated by gut bacterial inoculation. Gut metabolite profiling revealed that succinate, produced by Lactobacillus Firm-5, played deterministic roles in activating ilp gene expression and in regulating metabolism in honeybees. Notably, we demonstrated that succinate modulates host ilp gene expression through stimulating gut gluconeogenesis, a mechanism resembling that of humans. This study presents evidence for the role of gut metabolite in modulating host metabolism and contributes to the understanding of the interactions between gut microbiome and bee hosts.
Collapse
Affiliation(s)
- Benfeng Han
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572024, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yashuai Wu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572024, China
| |
Collapse
|
10
|
O'Brien PA, Robbins SJ, Tan S, Rix L, Miller DJ, Webster NS, Zhang G, Bourne DG. Comparative genomics identifies key adaptive traits of sponge-associated microbial symbionts. Environ Microbiol 2024; 26:e16690. [PMID: 39228053 DOI: 10.1111/1462-2920.16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Sponge microbiomes are often highly diverse making it difficult to determine which lineages are important for maintaining host health and homeostasis. Characterising genomic traits associated with symbiosis can improve our knowledge of which lineages have adapted to their host and what functions they might provide. Here we examined five microbial families associated with sponges that have previously shown evidence of cophylogeny, including Endozoicomonadaceae, Nitrosopumilaceae, Spirochaetaceae, Microtrichaceae and Thermoanaerobaculaceae, to better understand the mechanisms behind their symbiosis. We compared sponge-associated genomes to genomes found in other environments and found that sponge-specific clades were enriched in genes encoding many known mechanisms for symbiont survival, such as avoiding phagocytosis and defence against foreign genetic elements. We expand on previous knowledge to show that glycosyl hydrolases with sulfatases and sulfotransferases likely form multienzyme degradation pathways to break and remodel sulfated polysaccharides and reveal an enrichment in superoxide dismutase that may prevent damage from free oxygen radicals produced by the host. Finally, we identified novel traits in sponge-associated symbionts, such as urea metabolism in Spirochaetaceae which was previously shown to be rare in the phylum Spirochaetota. These results identify putative mechanisms by which symbionts have adapted to living in association with sponges.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Steven J Robbins
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Shenzhen, China
- BGI Research, Wuhan, China
| | - Laura Rix
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
- Institute for Marine and Antarctic studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| |
Collapse
|
11
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Guo D, Wang Y, Li Z, Zhang DX, Wang C, Wang H, Liu Z, Liu F, Guo X, Wang N, Xu B, Gao Z. Effects of abamectin nanocapsules on bees through host physiology, immune function, and gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172738. [PMID: 38670362 DOI: 10.1016/j.scitotenv.2024.172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
13
|
Yang C, Hu J, Su Q, Zhang Z, Du Y, Wang J, Sun H, Han B, Tang J, Guo L, Li H, Cai W, Zheng H, Zhou X, Zhang X. A review on recent taxonomic updates of gut bacteria associated with social bees, with a curated genomic reference database. INSECT SCIENCE 2024. [PMID: 38594229 DOI: 10.1111/1744-7917.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huihui Sun
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Benfeng Han
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Ye H, Jiang J, Lei Y, Fang N, Luo Y, Cheng Y, Li Y, Wang X, He H, Yu J, Xu Z, Zhang C. A systemic study of cyenopyrafen in strawberry cultivation system: Efficacy, residue behavior, and impact on honeybees (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123601. [PMID: 38373624 DOI: 10.1016/j.envpol.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yuan Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Yanjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
15
|
Dong JH, Xu X, Ren ZX, Zhao YH, Zhang Y, Chen L, Wu Y, Chen G, Cao R, Wu Q, Wang H. The adaptation of bumblebees to extremely high elevation associated with their gut microbiota. mSystems 2024; 9:e0121923. [PMID: 38329353 PMCID: PMC10949452 DOI: 10.1128/msystems.01219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Bumblebees are among the most abundant and important pollinators for sub-alpine and alpine flowering plant species in the Northern Hemisphere, but little is known about their adaptations to high elevations. In this article, we focused on two bumblebee species, Bombus friseanus and Bombus prshewalskyi, and their respective gut microbiota. The two species, distributed through the Hengduan Mountains of southwestern China, show species replacement at different elevations. We performed genome sequencing based on 20 worker bee samples of each species. Applying evolutionary population genetics and metagenomic approaches, we detected genes under selection and analyzed functional pathways between bumblebees and their gut microbes. We found clear genetic differentiation between the two host species and significant differences in their microbiota. Species replacement occurred in both hosts and their bacteria (Snodgrassella) with an increase in elevation. These extremely high-elevation bumblebees show evidence of positive selection related to diverse biological processes. Positively selected genes involved in host immune systems probably contributed to gut microbiota changes, while the butyrate generated by gut microbiota may influence both host energy metabolism and immune systems. This suggests a close association between the genomes of the host species and their microbiomes based on some degree of natural selection.IMPORTANCETwo closely related and dominant bumblebee species, distributed at different elevations through the Hengduan Mountains of southwestern China, showed a clear genomic signature of adaptation to elevation at the molecular level and significant differences in their respective microbiota. Species replacement occurred in both hosts and their bacteria (Snodgrassella) with an increase in elevation. Bumblebees' adaptations to higher elevations are closely associated with their gut microbiota through two biological processes: energy metabolism and immune response. Information allowing us to understand the adaptive mechanisms of species to extreme conditions is implicit if we are to conserve them as their environments change.
Collapse
Affiliation(s)
- Jiu-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan-Hui Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yaran Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - You Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guotao Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruiqing Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Frunze O, Kim H, Kim BJ, Lee JH, Bilal M, Kwon HW. Monitoring Immune Modulation in Season Population: Identifying Effects and Markers Related to Apis mellifera ligustica Honey Bee Health. Biomolecules 2023; 14:19. [PMID: 38254619 PMCID: PMC10813216 DOI: 10.3390/biom14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Honey bees play a significant role in ecology, producing biologically active substances used to promote human health. However, unlike humans, the molecular markers indicating honey bee health remain unknown. Unfortunately, numerous reports of honey bee collapse have been documented. To identify health markers, we analyzed ten defense system genes in Apis mellifera ligustica honey bees from winter (Owb) and spring (Fb for foragers and Nb for newly emerged) populations sampled in February and late April 2023, respectively. We focused on colonies free from SBV and DWV viruses. Molecular profiling revealed five molecular markers of honey bee health. Of these, two seasonal molecular markers-domeless and spz genes-were significantly downregulated in Owb compared to Nb and Fb honey bees. One task-related marker gene, apid-1, was identified as being downregulated in Owb and Nb compared to Fb honey bees. Two recommended general health markers, SOD and defensin-2, were upregulated in honey bees. These markers require further testing across various honey bee subspecies in different climatic regions. They can diagnose bee health without colony intervention, especially during low-temperature months like winter. Beekeepers can use this information to make timely adjustments to nutrients or heating to prevent seasonal losses.
Collapse
Affiliation(s)
- Olga Frunze
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (H.K.); (B.-j.K.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyunjee Kim
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (H.K.); (B.-j.K.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Byung-ju Kim
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (H.K.); (B.-j.K.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (H.K.); (B.-j.K.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Mustafa Bilal
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (H.K.); (B.-j.K.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyung-Wook Kwon
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (H.K.); (B.-j.K.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
17
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
18
|
Guo L, Tang J, Tang M, Luo S, Zhou X. Reactive oxygen species are regulated by immune deficiency and Toll pathways in determining the host specificity of honeybee gut bacteria. Proc Natl Acad Sci U S A 2023; 120:e2219634120. [PMID: 37556501 PMCID: PMC10438842 DOI: 10.1073/pnas.2219634120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Host specificity is observed in gut symbionts of diverse animal lineages. But how hosts maintain symbionts while rejecting their close relatives remains elusive. We use eusocial bees and their codiversified gut bacteria to understand host regulation driving symbiotic specificity. The cross-inoculation of bumblebee Gilliamella induced higher prostaglandin in the honeybee gut, promoting a pronounced host response through immune deficiency (IMD) and Toll pathways. Gene silencing and vitamin C treatments indicate that reactive oxygen species (ROS), not antimicrobial peptides, acts as the effector in inhibiting the non-native strain. Quantitative PCR and RNAi further reveal a regulatory function of the IMD and Toll pathways, in which Relish and dorsal-1 may regulate Dual Oxidase (Duox) for ROS production. Therefore, the honeybee maintains symbiotic specificity by creating a hostile gut environment to exotic bacteria, through differential regulation of its immune system, reflecting a co-opting of existing machinery evolved to combat pathogens.
Collapse
Affiliation(s)
- Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya572000, People’s Republic of China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, People’s Republic of China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou215100, People’s Republic of China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya572000, People’s Republic of China
| |
Collapse
|