1
|
Geng Y, Nguyen TVP, Homaee E, Golding I. Using bacterial population dynamics to count phages and their lysogens. Nat Commun 2024; 15:7814. [PMID: 39242585 PMCID: PMC11379933 DOI: 10.1038/s41467-024-51913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.
Collapse
Affiliation(s)
- Yuncong Geng
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Wang Y, Tong G, Jiang X, Tu C, Cai H, Fang W, Tan H, Weng Q, Wei X, Lin M. Biologic and genomic characterization of a novel virulent Aeromonas hydrophila phage phiA051, with high homology to prophages. Front Vet Sci 2024; 11:1415685. [PMID: 39091387 PMCID: PMC11292799 DOI: 10.3389/fvets.2024.1415685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Aeromonas hydrophila is particularly harmful to freshwater aquaculture, and the search for phage is an effective biological control method, but reports of possible temperate phages and their mutants are rare in this field. In this study, a virulent phage highly homologous to prophage in the genomes of A. hydrophila was collected and preliminary biological characterization was carried out to understand its nature. Materials and methods Water samples taken from eel ponds in Fujian, China were combined with the strain. Spot test method and double-layer agar plate assay was used for confirmation and purification. Phage virions were observed using transmission electron microscope. A total of 68 strains of Aeromonas spp. were used to determine the host range. MOI groups of 1,000, 100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001 were prepared to detect the optimal MOI. The conditions of thermal stability assay were set as 30, 40, 50, 60, 70 and 80°C for 1 h, respectively, and conditions of acid and alkali stability assay were set as 2.0, 4.0, 6.0, 8.0, 10.0 and 12.0 of pH. MOI of 0.01 and 0.1, respectively, are set to determine the inhibitory capacity of phage. Results A novel virulent A. hydrophila phage designated phiA051 has been isolated from aquaculture water. Electron microscopic observation showed that the phage phiA051 was composed of an icosahedral capsid. The phage phiA051 possesses an optimal multiplicity of infection (MOI) of 0.01, and its burst size was 108 PFU/cell. The phage maintained a high viability at temperatures of 30-50°C or pH 6.0-10.0 for 1 h. Phage phiA051 has certain potentials in rapidly inhibiting the spread of pathogen early in the outbreak, and it has a linear dsDNA with GC content of 60.55% and a total length of 32,212 bp, including 46 ORFs. Discussion The phage phiA051 behaved as a virulent phage. However, the BLASTN result showed that 23 of the top 25 hits were genomes of Aeromonas strains. It was suggested that phiA051 was probably derived from some prophage in the chromosome of Aeromonas. Further investigation of the mechanism how phage phiA051 transforms from a temperate phage to a virulent phage will provide a unique perspective and idea to explore the potential of prophages.
Collapse
Affiliation(s)
- Yuzhi Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xinglong Jiang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Chuandeng Tu
- Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen, China
| | - Hongjiao Cai
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, China
| | - Honglian Tan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qibiao Weng
- Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fuzhou, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Mao Lin
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| |
Collapse
|
3
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
4
|
Zhao M, Gao B, Wen A, Feng Y, Lu YQ. Structural basis of λCII-dependent transcription activation. Structure 2023; 31:968-974.e3. [PMID: 37269829 DOI: 10.1016/j.str.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The CII protein of bacteriophage λ activates transcription from the phage promoters PRE, PI, and PAQ by binding to two direct repeats that straddle the promoter -35 element. Although genetic, biochemical, and structural studies have elucidated many aspects of λCII-mediated transcription activation, no precise structure of the transcription machinery in the process is available. Here, we report a 3.1-Å cryo-electron microscopy (cryo-EM) structure of an intact λCII-dependent transcription activation complex (TAC-λCII), which comprises λCII, E. coli RNAP-σ70 holoenzyme, and the phage promoter PRE. The structure reveals the interactions between λCII and the direct repeats responsible for promoter specificity and the interactions between λCII and RNAP α subunit C-terminal domain responsible for transcription activation. We also determined a 3.4-Å cryo-EM structure of an RNAP-promoter open complex (RPo-PRE) from the same dataset. Structural comparison between TAC-λCII and RPo-PRE provides new insights into λCII-dependent transcription activation.
Collapse
Affiliation(s)
- Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou 310058, China.
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
5
|
Prolič-Kalinšek M, Volkov AN, Hadži S, Van Dyck J, Bervoets I, Charlier D, Loris R. Structural basis of DNA binding by YdaT, a functional equivalent of the CII repressor in the cryptic prophage CP-933P from Escherichia coli O157:H7. Acta Crystallogr D Struct Biol 2023; 79:245-258. [PMID: 36876434 PMCID: PMC9986795 DOI: 10.1107/s2059798323001249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
YdaT is a functional equivalent of the CII repressor in certain lambdoid phages and prophages. YdaT from the cryptic prophage CP-933P in the genome of Escherichia coli O157:H7 is functional as a DNA-binding protein and recognizes a 5'-TTGATTN6AATCAA-3' inverted repeat. The DNA-binding domain is a helix-turn-helix (HTH)-containing POU domain and is followed by a long α-helix (α6) that forms an antiparallel four-helix bundle, creating a tetramer. The loop between helix α2 and the recognition helix α3 in the HTH motif is unusually long compared with typical HTH motifs, and is highly variable in sequence and length within the YdaT family. The POU domains have a large degree of freedom to move relative to the helix bundle in the free structure, but their orientation becomes fixed upon DNA binding.
Collapse
Affiliation(s)
- Maruša Prolič-Kalinšek
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
- Jean Jeener NMR Center, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|
6
|
Feiss M, Young R, Ramsey J, Adhya S, Georgopoulos C, Hendrix RW, Hatfull GF, Gilcrease EB, Casjens SR. Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. Microbiol Mol Biol Rev 2022; 86:e0012421. [PMID: 36165780 PMCID: PMC9799177 DOI: 10.1128/mmbr.00124-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ryland Young
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, The National Cancer Institute, Bethesda, Maryland, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eddie B. Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Morehouse JP, Baker TA, Sauer RT. FtsH degrades dihydrofolate reductase by recognizing a partially folded species. Protein Sci 2022; 31:e4410. [PMID: 36630366 PMCID: PMC9601784 DOI: 10.1002/pro.4410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 01/14/2023]
Abstract
AAA+ proteolytic machines play essential roles in maintaining and rebalancing the cellular proteome in response to stress, developmental cues, and environmental changes. Of the five AAA+ proteases in Escherichia coli, FtsH is unique in its attachment to the inner membrane and its function in degrading both membrane and cytosolic proteins. E. coli dihydrofolate reductase (DHFR) is a stable and biophysically well-characterized protein, which a previous study found resisted FtsH degradation despite the presence of an ssrA degron. By contrast, we find that FtsH degrades DHFR fused to a long peptide linker and ssrA tag. Surprisingly, we also find that FtsH degrades DHFR with shorter linkers and ssrA tag, and without any linker or tag. Thus, FtsH must be able to recognize a sequence element or elements within DHFR. We find that FtsH degradation of DHFR is noncanonical in the sense that it does not rely upon recognition of an unstructured polypeptide at or near the N-terminus or C-terminus of the substrate. Results using peptide-array experiments, mutant DHFR proteins, and fusion proteins suggest that FtsH recognizes an internal sequence in a species of DHFR that is partially unfolded. Overall, our findings provide insight into substrate recognition by FtsH and indicate that its degradation capacity is broader than previously reported.
Collapse
Affiliation(s)
- Juhee P. Morehouse
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Tania A. Baker
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Robert T. Sauer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Pan L, Li D, Lin W, Liu W, Qin W, Xu L, Tong Y. Genomic analysis of a novel active prophage of Hafnia paralvei. Arch Virol 2022; 167:2027-2034. [PMID: 35752683 DOI: 10.1007/s00705-022-05498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Little is known about the prophages in Hafniaceae bacteria. A novel Hafnia phage, yong2, was induced from Hafnia paralvei by treatment with mitomycin C. The phage has an elliptical head with dimensions of approximately 45 × 38 nm and a long noncontractile tail of approximately 157 × 4 nm. The complete genome of Hafnia phage yong2 is a 39,546-bp double-stranded DNA with a G+C content of 49.9%, containing 59 open reading frames (ORFs) and having at least one fixed terminus (GGGGCAGCGACA). In phylogenetic analysis, Hafnia phage yong2 clustered with four predicted Hafnia prophages and one predicted Enterobacteriaceae prophage. These prophages and members of the family Drexlerviridae together formed two distinct subclades nested within a clade, suggesting the existence of a novel class of prophages with conserved sequences and a unique evolutionary status not yet studied before in Hafniaceae and Enterobacteriaceae bacteria.
Collapse
Affiliation(s)
- Lingting Pan
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dengfeng Li
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wencai Liu
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Weinan Qin
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lihua Xu
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Induction and Genomic Analysis of a Lysogenic Phage of Hafnia paralvei. Curr Microbiol 2022; 79:50. [PMID: 34982243 DOI: 10.1007/s00284-021-02698-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 11/03/2022]
Abstract
Hafnia paralvei is a bacterium that can cause zoonoses. No research has been reported on H. paralvei prophage. In this study, a Hafnia phage yong1 was induced from pathogenic H. paralvei LY-23 by mitomycin C. The phage showed a Myoviridae-like morphology having a hexagonal head of approximately 65 nm in diameter and a contractile tail of approximately 95 nm in length and 17 nm in width. Its genome was sequenced by using the Illumina Miseq platform. The complete genome of Hafnia phage yong1 is 43,329 bp with a G + C content of 47.65%. BLASTn analysis revealed that Hafnia phage yong1 had the highest sequence similarity with the predicted prophages of Enterobacter chengduensis strain WCHECl-C4 = WCHECh050004 recovered from a human blood sample and Escherichia coli strain L103-2 recovered from a goose farm in China. Hafnia phage yong1 contains a tRNA gene and 76 predicted open reading frames, 33 of which were annotated. Gene strings similar to the bacteriophage λ cro-cI-rexA-rexB operon conferring Imm and Rex to lysogenic cells were found in Hafnia phage yong1 genome. Hafnia phage yong1 is the first Myoviridae-like phage found to contain such contiguous genes. Hafnia phage yong1 formed an independent branch between two families, Chaseviridae and Drexlerviridae, in the Proteomic tree.
Collapse
|
10
|
Bistable Expression of a Toxin-Antitoxin System Located in a Cryptic Prophage of Escherichia coli O157:H7. mBio 2021; 12:e0294721. [PMID: 34844426 PMCID: PMC8630535 DOI: 10.1128/mbio.02947-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin’s DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage.
Collapse
|
11
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Thomason LC, Morrill K, Murray G, Court C, Shafer B, Schneider TD, Court DL. Elements in the λ immunity region regulate phage development: beyond the 'Genetic Switch'. Mol Microbiol 2019; 112:1798-1813. [PMID: 31545538 PMCID: PMC8103288 DOI: 10.1111/mmi.14394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 01/16/2023]
Abstract
Genetic elements in the bacteriophage λ immunity region contribute to stable maintenance and synchronous induction of the integrated Escherichia coli prophage. There is a bistable switch between lysogenic and lytic growth that is orchestrated by the CI and Cro repressors acting on the lytic (PL and PR ) and lysogenic (PRM ) promoters, referred to as the Genetic Switch. Other less well-characterized elements in the phage immunity region include the PLIT promoter and the immunity terminator, TIMM . The PLIT promoter is repressed by the bacterial LexA protein in λ lysogens. LexA repressor, like the λ CI repressor, is inactivated during the SOS response to DNA damage, and this regulation ensures that the PLIT promoter and the lytic PL and PR promoters are synchronously activated. Proper RexA and RexB protein levels are critical for the switch from lysogeny to lytic growth. Mutation of PLIT reduces RexB levels relative to RexA, compromising cellular energetics and causing a 10-fold reduction in lytic phage yield. The RexA and RexB proteins interact with themselves and each other in a bacterial two-hybrid system. We also find that the transcription terminator, TIMM , is a Rho-independent, intrinsic terminator. Inactivation of TIMM has minimal effect on λ lysogenization or prophage induction.
Collapse
Affiliation(s)
- Lynn C Thomason
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kathleen Morrill
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Gillian Murray
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Carolyn Court
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Brenda Shafer
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thomas D Schneider
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Donald L Court
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
13
|
Kamal SM, Rybtke ML, Nimtz M, Sperlein S, Giske C, Trček J, Deschamps J, Briandet R, Dini L, Jänsch L, Tolker-Nielsen T, Lee C, Römling U. Two FtsH Proteases Contribute to Fitness and Adaptation of Pseudomonas aeruginosa Clone C Strains. Front Microbiol 2019; 10:1372. [PMID: 31338071 PMCID: PMC6629908 DOI: 10.3389/fmicb.2019.01372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental bacterium and a nosocomial pathogen with clone C one of the most prevalent clonal groups. The P. aeruginosa clone C specific genomic island PACGI-1 harbors a xenolog of ftsH encoding a functionally diverse membrane-spanning ATP-dependent metalloprotease on the core genome. In the aquatic isolate P. aeruginosa SG17M, the core genome copy ftsH1 significantly affects growth and dominantly mediates a broad range of phenotypes, such as secretion of secondary metabolites, swimming and twitching motility and resistance to aminoglycosides, while the PACGI-1 xenolog ftsH2 backs up the phenotypes in the ftsH1 mutant background. The two proteins, with conserved motifs for disaggregase and protease activity present in FtsH1 and FtsH2, have the ability to form homo- and hetero-oligomers with ftsH2 distinctively expressed in the late stationary phase of growth. However, mainly FtsH1 degrades a major substrate, the heat shock transcription factor RpoH. Pull-down experiments with substrate trap-variants inactive in proteolytic activity indicate both FtsH1 and FtsH2 to interact with the inhibitory protein HflC, while the phenazine biosynthesis protein PhzC was identified as a substrate of FtsH1. In summary, as an exception in P. aeruginosa, clone C harbors two copies of the ftsH metallo-protease, which cumulatively are required for the expression of a diversity of phenotypes.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, New Cairo, Egypt
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manfred Nimtz
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Sperlein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Lothar Jänsch
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
The Bacteriophage Lambda CII Phenotypes for Complementation, Cellular Toxicity and Replication Inhibition Are Suppressed in cII-oop Constructs Expressing the Small RNA OOP. Viruses 2018. [PMID: 29518935 PMCID: PMC5869508 DOI: 10.3390/v10030115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The temperate bacteriophage lambda (λ) CII protein is a positive regulator of transcription from promoter pE, a component of the lysogenic response. The expression of cII was examined in vectors devoid of phage transcription-modulating elements. Their removal enabled evaluating if the expression of the small RNA OOP, on its own, could suppress CII activities, including complementing for a lysogenic response, cell toxicity and causing rapid cellular loss of ColE1 plasmids. The results confirm that OOP RNA expression from the genetic element pO-oop-to can prevent the ability of plasmid-encoded CII to complement for a lysogenic response, suggesting that it serves as a powerful regulatory pivot in λ development. Plasmids with a pO promoter sequence of 45 nucleotides (pO45), containing the −10 and −35 regions for oop, were non-functional; whereas, plasmids with pO94 prevented CII complementation, CII-dependent plasmid loss and suppressed CII toxicity, suggesting the pO promoter has an extended DNA sequence. All three CII activities were eliminated by the deletion of the COOH-terminal 20 amino acids of CII. Host mutations in the hflA locus, in pcnB and in rpoB influenced CII activities. These studies suggest that the COOH-terminal end of CII likely interacts with the β-subunit of RNA polymerase.
Collapse
|
15
|
Bittner LM, Arends J, Narberhaus F. When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Biol Chem 2017; 398:625-635. [PMID: 28085670 DOI: 10.1515/hsz-2016-0302] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
Abstract
Cellular proteomes are dynamic and adjusted to permanently changing conditions by ATP-fueled proteolytic machineries. Among the five AAA+ proteases in Escherichia coli FtsH is the only essential and membrane-anchored metalloprotease. FtsH is a homohexamer that uses its ATPase domain to unfold and translocate substrates that are subsequently degraded without the need of ATP in the proteolytic chamber of the protease domain. FtsH eliminates misfolded proteins in the context of general quality control and properly folded proteins for regulatory reasons. Recent trapping approaches have revealed a number of novel FtsH substrates. This review summarizes the substrate diversity of FtsH and presents details on the surprisingly diverse recognition principles of three well-characterized substrates: LpxC, the key enzyme of lipopolysaccharide biosynthesis; RpoH, the alternative heat-shock sigma factor and YfgM, a bifunctional membrane protein implicated in periplasmic chaperone functions and cytoplasmic stress adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Bittner
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, NDEF 06/783, D-44801 Bochum
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, NDEF 06/783, D-44801 Bochum
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, NDEF 06/783, D-44801 Bochum
| |
Collapse
|
16
|
Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc Natl Acad Sci U S A 2017; 114:5689-5694. [PMID: 28512220 DOI: 10.1073/pnas.1703415114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthesis of the 31-amino acid, inner membrane protein MgtS (formerly denoted YneM) is induced by very low Mg2+ in a PhoPQ-dependent manner in Escherichia coli Here we report that MgtS acts to increase intracellular Mg2+ levels and maintain cell integrity upon Mg2+ depletion. Upon development of a functional tagged derivative of MgtS, we found that MgtS interacts with MgtA to increase the levels of this P-type ATPase Mg2+ transporter under Mg2+-limiting conditions. Correspondingly, the effects of MgtS upon Mg2+ limitation are lost in a ∆mgtA mutant, and MgtA overexpression can suppress the ∆mgtS phenotype. MgtS stabilization of MgtA provides an additional layer of regulation of this tightly controlled Mg2+ transporter and adds to the list of small proteins that regulate inner membrane transporters.
Collapse
|
17
|
Das C, Ghosh TS, Mande SS. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization. J Biosci 2016; 41:133-43. [PMID: 26949095 DOI: 10.1007/s12038-016-9599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.
Collapse
Affiliation(s)
- Chandrani Das
- Bio-Sciences R and D Division, TCS Innovation Labs, Tata Research Development and Design Centre, Tata Consultancy Service Ltd., Pune 411 013, India
| | | | | |
Collapse
|
18
|
Bittner LM, Westphal K, Narberhaus F. Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron. J Biol Chem 2015; 290:19367-78. [PMID: 26092727 DOI: 10.1074/jbc.m115.648550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
Regulated proteolysis efficiently and rapidly adapts the bacterial proteome to changing environmental conditions. Many protease substrates contain recognition motifs, so-called degrons, that direct them to the appropriate protease. Here we describe an entirely new degron identified in the cytoplasmic N-terminal end of the membrane-anchored protein YfgM of Escherichia coli. YfgM is stable during exponential growth and degraded in stationary phase by the essential FtsH protease. The alarmone (p)ppGpp, but not the previously described YfgM interactors RcsB and PpiD, influence YfgM degradation. By scanning mutagenesis, we define individual amino acids responsible for turnover of YfgM and find that the degron does not at all comply with the known N-end rule pathway. The YfgM degron is a distinct module that facilitates FtsH-mediated degradation when fused to the N terminus of another monotopic membrane protein but not to that of a cytoplasmic protein. Several lines of evidence suggest that stress-induced degradation of YfgM relieves the response regulator RcsB and thereby permits cellular protection by the Rcs phosphorelay system. On the basis of these and other results in the literature, we propose a model for how the membrane-spanning YfgM protein serves as connector between the stress responses in the periplasm and cytoplasm.
Collapse
Affiliation(s)
| | - Kai Westphal
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
19
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Nejman-Faleńczyk B, Bloch S, Licznerska K, Felczykowska A, Dydecka A, Węgrzyn A, Węgrzyn G. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense. Plasmid 2015; 78:71-8. [DOI: 10.1016/j.plasmid.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
|
21
|
Murchland I, Ahlgren-Berg A, Priest DG, Dodd IB, Shearwin KE. Promoter activation by CII, a potent transcriptional activator from bacteriophage 186. J Biol Chem 2014; 289:32094-32108. [PMID: 25294872 DOI: 10.1074/jbc.m114.608026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lysogeny promoting protein CII from bacteriophage 186 is a potent transcriptional activator, capable of mediating at least a 400-fold increase in transcription over basal activity. Despite being functionally similar to its counterpart in phage λ, it shows no homology at the level of protein sequence and does not belong to any known family of transcriptional activators. It also has the unusual property of binding DNA half-sites that are separated by 20 base pairs, center to center. Here we investigate the structural and functional properties of CII using a combination of genetics, in vitro assays, and mutational analysis. We find that 186 CII possesses two functional domains, with an independent activation epitope in each. 186 CII owes its potent activity to activation mechanisms that are dependent on both the σ(70) and α C-terminal domain (αCTD) components of RNA polymerase, contacting different functional domains. We also present evidence that like λ CII, 186 CII is proteolytically degraded in vivo, but unlike λ CII, 186 CII proteolysis results in a specific, transcriptionally inactive, degradation product with altered self-association properties.
Collapse
Affiliation(s)
- Iain Murchland
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexandra Ahlgren-Berg
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David G Priest
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ian B Dodd
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Keith E Shearwin
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
22
|
Blasche S, Wuchty S, Rajagopala SV, Uetz P. The protein interaction network of bacteriophage lambda with its host, Escherichia coli. J Virol 2013; 87:12745-55. [PMID: 24049175 PMCID: PMC3838138 DOI: 10.1128/jvi.02495-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens.
Collapse
Affiliation(s)
- Sonja Blasche
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Wuchty
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
23
|
Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 2012; 49:237-48. [PMID: 23246436 DOI: 10.1016/j.molcel.2012.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.
Collapse
Affiliation(s)
- Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 2012; 507:125-34. [PMID: 22868206 DOI: 10.1016/j.gene.2012.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
As one of the pathogens of hospital-acquired infections, Acinetobacter baumannii poses great challenges to the public health. A. baumannii phage could be an effective way to fight multi-resistant A. baumannii. Here, we completed the whole genome sequencing of the complete genome of A. baumannii phage AB1, which consists of 45,159 bp and is a double-stranded DNA molecule with an average GC content of 37.7%. The genome encodes one tRNA gene and 85 open reading frames (ORFs) and the average size of the ORF is 531 bp in length. Among 85 ORFs, only 14 have been identified to share significant sequence similarities to the genes with known functions, while 28 are similar in sequence to the genes with function-unknown genes in the database and 43 ORFs are uniquely present in the phage AB1 genome. Fourteen function-assigned genes with putative functions include five phage structure proteins, an RNA polymerase, a big sub-unit and a small sub-unit of a terminase, a methylase and a recombinase and the proteins involved in DNA replication and so on. Multiple sequence alignment was conducted among those homologous proteins and the phylogenetic trees were reconstructed to analyze the evolutionary courses of these essential genes. From comparative genomics analysis, it turned out clearly that the frame of the phage genome mainly consisted of genes from Xanthomonas phages, Burkholderia ambifaria phages and Enterobacteria phages and while it comprises genes of its host A. baumannii only sporadically. The mosaic feature of the phage genome suggested that the horizontal gene transfer occurred among the phage genomes and between the phages and the host bacterium genomes. Analyzing the genome sequences of the phages should lay sound foundation to investigate how phages adapt to the environment and infect their hosts, and even help to facilitate the development of biological agents to deal with pathogenic bacteria.
Collapse
|
25
|
Hayes S, Horbay MA, Hayes C. A CI-independent form of replicative inhibition: turn off of early replication of bacteriophage lambda. PLoS One 2012; 7:e36498. [PMID: 22590552 PMCID: PMC3349717 DOI: 10.1371/journal.pone.0036498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, p(O) is required for IP, as are iterons ITN3-4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop(+)oriλ(+) sequence.
Collapse
Affiliation(s)
- Sidney Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | | | | |
Collapse
|
26
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
27
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
28
|
Jacobsen NR, White PA, Gingerich J, Møller P, Saber AT, Douglas GR, Vogel U, Wallin H. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:331-337. [PMID: 20963790 DOI: 10.1002/em.20629] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 05/30/2023]
Abstract
It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation spectrum in the cII gene of Printex 90 exposed cells. Cells exposed to CB have a substantially different mutation spectrum in the cII gene compared with vehicle exposed controls. The mutation spectra differ both in the positions (P < 0.0001) and types of the mutations (P < 0.0001). Exposure to Printex 90 increased the number of single base deletions by 2.3-fold and larger deletions by 1.9-fold. Most single base deletions were within two repetitive sequences in cII, but the large deletions were not. The mechanism behind the large deletions is not yet known. The largest increases in base substitutions were observed in G:C→T:A, G:C→C:G, and A:T→T:A transversion mutations; this is in keeping with a genetic finger print of ROS and is further substantiated by the observations that Printex 90 generates ROS and oxidatively damaged DNA.
Collapse
Affiliation(s)
- Nicklas Raun Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Joh RI, Weitz JS. To lyse or not to lyse: transient-mediated stochastic fate determination in cells infected by bacteriophages. PLoS Comput Biol 2011; 7:e1002006. [PMID: 21423715 PMCID: PMC3053317 DOI: 10.1371/journal.pcbi.1002006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/22/2010] [Indexed: 01/04/2023] Open
Abstract
Cell fate determination is usually described as the result of the stochastic dynamics of gene regulatory networks (GRNs) reaching one of multiple steady-states each of which corresponds to a specific decision. However, the fate of a cell is determined in finite time suggesting the importance of transient dynamics in cellular decision making. Here we consider cellular decision making as resulting from first passage processes of regulatory proteins and examine the effect of transient dynamics within the initial lysis-lysogeny switch of phage λ. Importantly, the fate of an infected cell depends, in part, on the number of coinfecting phages. Using a quantitative model of the phage λ GRN, we find that changes in the likelihood of lysis and lysogeny can be driven by changes in phage co-infection number regardless of whether or not there exists steady-state bistability within the GRN. Furthermore, two GRNs which yield qualitatively distinct steady state behaviors as a function of phage infection number can show similar transient responses, sufficient for alternative cell fate determination. We compare our model results to a recent experimental study of cell fate determination in single cell assays of multiply infected bacteria. Whereas the experimental study proposed a “quasi-independent” hypothesis for cell fate determination consistent with an observed data collapse, we demonstrate that observed cell fate results are compatible with an alternative form of data collapse consistent with a partial gene dosage compensation mechanism. We show that including partial gene dosage compensation at the mRNA level in our stochastic model of fate determination leads to the same data collapse observed in the single cell study. Our findings elucidate the importance of transient gene regulatory dynamics in fate determination, and present a novel alternative hypothesis to explain single-cell level heterogeneity within the phage λ lysis-lysogeny decision switch. Multicellular organisms, single-celled organisms, and even viruses can exhibit alternative responses to various internal and environmental conditions. At the cellular level, alternative fate determination is usually described as the result of the inherent bistability of gene regulatory networks (GRNs). However, the fate of a cell is determined in finite time suggesting the importance of transient dynamics to cellular decision making. Here, we present a quantitative gene regulatory model of how bacteriophages determine the fate of an infected bacterium. We find that increasing the number of infecting phages increases the chance of quiescent (i.e., lysogeny) vs. productive (i.e. lysis) viral growth, in agreement with prior studies. However, unlike previous theoretical studies, the bias in cell fate is a result of the transient divergence of stochastic gene expression dynamics. We compare and contrast our theoretical model with recent observations of cell fate measured at the single-cell level within multiply-infected cells. Predicted heterogeneity in cell fate is shown to agree with data when including a previously unidentified gene dosage compensation mechanism, which represents an alternative hypothesis to how multiple phages interact in influencing cell fate. Together, our results suggest the importance of quantitative details of transient gene regulation in driving stochastic fate determination.
Collapse
Affiliation(s)
- Richard I. Joh
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Joshua S. Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Studies on Escherichia coli HflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch. BMC Microbiol 2011; 11:34. [PMID: 21324212 PMCID: PMC3053222 DOI: 10.1186/1471-2180-11-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lysis-lysogeny decision in the temperate coliphage λ is influenced by a number of phage proteins (CII and CIII) as well as host factors, viz. Escherichia coli HflB, HflKC and HflD. Prominent among these are the transcription factor CII and HflB, an ATP-dependent protease that degrades CII. Stabilization of CII promotes lysogeny, while its destabilization induces the lytic mode of development. All other factors that influence the lytic/lysogenic decision are known to act by their effects on the stability of CII. Deletion of hflKC has no effect on the stability of CII. However, when λ infects ΔhflKC cells, turbid plaques are produced, indicating stabilization of CII under these conditions. RESULTS We find that CII is stabilized in ΔhflKC cells even without infection by λ, if CIII is present. Nevertheless, we also obtained turbid plaques when a ΔhflKC host was infected by a cIII-defective phage (λcIII67). This observation raises a fundamental question: does lysogeny necessarily correlate with the stabilization of CII? Our experiments indicate that CII is indeed stabilized under these conditions, implying that stabilization of CII is possible in ΔhflKC cells even in the absence of CIII, leading to lysogeny. CONCLUSION We propose that a yet unidentified CII-stabilizing factor in λ may influence the lysis-lysogeny decision in ΔhflKC cells.
Collapse
Affiliation(s)
- Kaustav Bandyopadhyay
- Department of Biochemistry, Bose Institute, P 1/12, C,I,T, Scheme VIIM, Kolkata 700 054, India
| | | | | | | |
Collapse
|
31
|
Ayuso-Tejedor S, Nishikori S, Okuno T, Ogura T, Sancho J. FtsH cleavage of non-native conformations of proteins. J Struct Biol 2010; 171:117-24. [DOI: 10.1016/j.jsb.2010.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 05/01/2010] [Accepted: 05/03/2010] [Indexed: 11/17/2022]
|
32
|
Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro. Arch Biochem Biophys 2010; 501:239-43. [PMID: 20599668 DOI: 10.1016/j.abb.2010.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/14/2010] [Accepted: 06/25/2010] [Indexed: 11/25/2022]
Abstract
LambdaCII is the key protein that influences the lysis/lysogeny decision of lambda by activating several phage promoters. The effect of CII is modulated by a number of phage and host proteins including Escherichia coli HflK and HflC. These membrane proteins copurify as a tightly bound complex 'HflKC' that inhibits the HflB (FtsH)-mediated proteolysis of CII both in vitro and in vivo. Individual purification of HflK and HflC has not been possible so far, since each requires the presence of the other for proper folding. We report the first purification of HflK and HflC separately as active and functional proteins and show that each can interact with HflB on its own and each inhibits the proteolysis of CII. They also inhibit the proteolysis of E. coli sigma(32) by HflB. We show that at low concentrations each protein is dimeric, based on which we propose a scheme for the mutual interactions of HflB, HflK and HflC in a supramolecular HflBKC protease complex.
Collapse
Affiliation(s)
- Kaustav Bandyopadhyay
- Department of Biochemistry, Bose Institute P-1/12, C.I.T. Scheme VIIM, Kolkata 700 054, India
| | | | | | | |
Collapse
|
33
|
HflD, an Escherichia coli protein involved in the λ lysis–lysogeny switch, impairs transcription activation by λCII. Arch Biochem Biophys 2010; 493:175-83. [DOI: 10.1016/j.abb.2009.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 11/17/2022]
|
34
|
Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 2009; 160:652-9. [DOI: 10.1016/j.resmic.2009.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/01/2022]
|
35
|
Parua PK, Datta AB, Parrack P. Specific hydrophobic residues in the 4 helix of CII are crucial for maintaining its tetrameric structure and directing the lysogenic choice. J Gen Virol 2009; 91:306-12. [DOI: 10.1099/vir.0.015040-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
St-Pierre F, Endy D. Determination of cell fate selection during phage lambda infection. Proc Natl Acad Sci U S A 2008; 105:20705-10. [PMID: 19098103 PMCID: PMC2605630 DOI: 10.1073/pnas.0808831105] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage lambda infection of Escherichia coli can result in distinct cell fate outcomes. For example, some cells lyse whereas others survive as lysogens. A quantitative biophysical model of lambda infection supports the hypothesis that spontaneous differences in the timing of individual molecular events during lambda infection leads to variation in the selection of cell fates. Building from this analysis, the lambda lysis-lysogeny decision now serves as a paradigm for how intrinsic molecular noise can influence cellular behavior, drive developmental processes, and produce population heterogeneity. Here, we report experimental evidence that warrants reconsidering this framework. By using cell fractioning, plating, and single-cell fluorescent microscopy, we find that physical differences among cells present before infection bias lambda developmental outcomes. Specifically, variation in cell volume at the time of infection can be used to help predict cell fate: a approximately 2-fold increase in cell volume results in a 4- to 5-fold decrease in the probability of lysogeny. Other cell fate decisions now thought to be stochastic might also be determined by pre-existing variation.
Collapse
Affiliation(s)
| | - Drew Endy
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
37
|
Obrist M, Langklotz S, Milek S, Führer F, Narberhaus F. Region C of the Escherichia coli heat shock sigma factor RpoH (σ32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiol Lett 2008; 290:199-208. [DOI: 10.1111/j.1574-6968.2008.01423.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Rokney A, Kobiler O, Amir A, Court DL, Stavans J, Adhya S, Oppenheim AB. Host responses influence on the induction of lambda prophage. Mol Microbiol 2008; 68:29-36. [PMID: 18298445 PMCID: PMC2327240 DOI: 10.1111/j.1365-2958.2008.06119.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of bacteriophage lambda CI repressor leads almost exclusively to lytic development. Prophage induction can be initiated either by DNA damage or by heat treatment of a temperature-sensitive repressor. These two treatments also cause a concurrent activation of either the host SOS or heat-shock stress responses respectively. We studied the effects of these two methods of induction on the lytic pathway by monitoring the activation of different lambda promoters, and found that the lambda genetic network co-ordinates information from the host stress response networks. Our results show that the function of the CII transcriptional activator, which facilitates the lysogenic developmental pathway, is not observed following either method of induction. Mutations in the cro gene restore the CII function irrespective of the induction method. Deletion of the heat-shock protease gene ftsH can also restore CII function following heat induction but not following SOS induction. Our findings highlight the importance of the elimination of CII function during induction as a way to ensure an efficient lytic outcome. We also show that, despite the common inhibitory effect on CII function, there are significant differences in the heat- and SOS-induced pathways leading to the lytic cascade.
Collapse
Affiliation(s)
- Assaf Rokney
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
39
|
Šnyrychová I, Kós PB, Hideg É. Hydroxyl radicals are not the protagonists of UV-B-induced damage in isolated thylakoid membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1112-1121. [PMID: 32689441 DOI: 10.1071/fp07151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/17/2007] [Indexed: 06/11/2023]
Abstract
The production of reactive oxygen species (ROS) was studied in isolated thylakoid membranes exposed to 312 nm UV-B irradiation. Hydroxyl radicals (•OH) and hydrogen peroxide were measured directly, using a newly developed method based on hydroxylation of terephthalic acid and the homovanillic acid/peroxidase assay, respectively. At the early stage of UV-B stress (doses lower than 2.0 J cm-2), •OH were derived from superoxide radicals via hydrogen peroxide. Production of these ROS was dependent on photosynthetic electron transport and was not exclusive to UV-B. Both ROS were found in samples exposed to the same doses of PAR, suggesting that the observed ROS are by-products of the UV-B-driven electron transport rather than specific initiators of the UV-B-induced damage. After longer exposure of thylakoids to UV-B, leading to the inactivation of PSII centres, a small amount of •OH was still observed in thylakoids, even though no free hydrogen peroxide was detected. At this late stage of UV-B stress, •OH may also be formed by the direct cleavage of organic peroxides by UV-B. Immunodetection showed that the presence of the observed ROS alone was not sufficient to achieve the degradation of the D1 protein of PSII centres.
Collapse
Affiliation(s)
- Iva Šnyrychová
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Péter B Kós
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Éva Hideg
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
40
|
Halder S, Datta AB, Parrack P. Probing the antiprotease activity of lambdaCIII, an inhibitor of the Escherichia coli metalloprotease HflB (FtsH). J Bacteriol 2007; 189:8130-8. [PMID: 17890311 PMCID: PMC2168696 DOI: 10.1128/jb.00820-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The CIII protein encoded by the temperate coliphage lambda acts as an inhibitor of the ubiquitous Escherichia coli metalloprotease HflB (FtsH). This inhibition results in the stabilization of transcription factor lambdaCII, thereby helping the phage to lysogenize the host bacterium. LambdaCIII, a small (54-residue) protein of unknown structure, also protects sigma(32), another specific substrate of HflB. In order to understand the details of the inhibitory mechanism of CIII, we cloned and expressed the protein with an N-terminal six-histidine tag. We also synthesized and studied a 28-amino-acid peptide, CIIIC, encompassing the central 14 to 41 residues of CIII that exhibited antiproteolytic activity. Our studies show that CIII exists as a dimer under native conditions, aided by an intersubunit disulfide bond, which is dispensable for dimerization. Unlike CIII, CIIIC resists digestion by HflB. While CIII binds to HflB, it does not bind to CII. On the basis of these results, we discuss various mechanisms for the antiproteolytic activity of CIII.
Collapse
Affiliation(s)
- Sabyasachi Halder
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata 700054, India
| | | | | |
Collapse
|
41
|
Führer F, Müller A, Baumann H, Langklotz S, Kutscher B, Narberhaus F. Sequence and Length Recognition of the C-terminal Turnover Element of LpxC, a Soluble Substrate of the Membrane-bound FtsH Protease. J Mol Biol 2007; 372:485-96. [PMID: 17651755 DOI: 10.1016/j.jmb.2007.06.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/06/2007] [Accepted: 06/26/2007] [Indexed: 11/17/2022]
Abstract
The membrane-anchored FtsH protease is essential in Escherichia coli as it adjusts the cellular amount of LpxC, the key enzyme in lipopolysaccharide (LPS) biosynthesis. Both accumulation and depletion of LpxC are toxic to E. coli. By continuous proteolysis of LpxC, FtsH maintains a low concentration of LpxC and, hence, the proper equilibrium between LPS and phospholipids. The C terminus of LpxC is required for turnover. By adding this tail to glutathione-S-transferase (GST) we show that it is necessary but not sufficient for FtsH-mediated degradation. A detailed mutational analysis revealed six non-polar residues in the C terminus of LpxC that are critical for degradation. Alteration of the C-terminal AVLA motif towards the SsrA-like sequence ALAA directed LpxC to other cellular proteases reinforcing the importance of the C-terminal tail for targeting to FtsH. Short C-terminal truncations stabilized LpxC. Most mutations in the C terminus of LpxC left its enzymatic activity intact as was shown by growth assays, microscopy and 2-keto-3-deoxyoctonate (KDO) determination. The critical length of the turnover element was defined by internal deletions. A C-terminal tail of about 20 amino acids length is required for proteolysis of LpxC by FtsH.
Collapse
Affiliation(s)
- Frank Führer
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kobiler O, Rokney A, Oppenheim AB. Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. PLoS One 2007; 2:e363. [PMID: 17426811 PMCID: PMC1838920 DOI: 10.1371/journal.pone.0000363] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/21/2007] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent protease FtsH (HflB) complexed with HflKC participates in post-translational control of the lysis-lysogeny decision of bacteriophage lambda by rapid degradation of lambda CII. Both phage-encoded proteins, the CII transcription activator and the CIII polypeptide, are required for efficient lysogenic response. The conserved CIII is both an inhibitor and substrate of FtsH. Here we show that the protease inhibitor CIII is present as oligomeric amphipathic alpha helical structures and functions as a competitive inhibitor of FtsH by preventing binding of the CII substrate. We identified single alanine substitutions in CIII that abolish its activity. We characterize a dominant negative effect of a CIII mutant. Thus, we suggest that CIII oligomrization is required for its function. Real-time analysis of CII activity demonstrates that the effect of CIII is not seen in the absence of either FtsH or HflKC. When CIII is provided ectopically, CII activity increases linearly as a function of the multiplicity of infection, suggesting that CIII enhances CII stability and the lysogenic response. FtsH function is essential for cellular viability as it regulates the balance in the synthesis of phospholipids and lipopolysaccharides. Genetic experiments confirmed that the CIII bacteriostatic effects are due to inhibition of FtsH. Thus, the early presence of CIII following infection stimulates the lysogenic response, while its degradation at later times ensures the reactivation of FtsH allowing the growth of the established lysogenic cell.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | |
Collapse
|
43
|
Amir A, Kobiler O, Rokney A, Oppenheim AB, Stavans J. Noise in timing and precision of gene activities in a genetic cascade. Mol Syst Biol 2007; 3:71. [PMID: 17299413 PMCID: PMC1828745 DOI: 10.1038/msb4100113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 10/24/2006] [Indexed: 11/25/2022] Open
Abstract
The timing of events along the induction cascade of bacteriophage lambda is independent of UV dose and displays increased relative temporal precision with cascade progression. This behavior is reproduced by a model of a cascade consisting of independent steps that shows that higher temporal precision can be attained by a cascade consisting of a large number of fast steps. The observed cell-cell variability in cascade timing is not due to differences in uniform dilation of intervals between events among cells, but rather to the independent distribution of interval durations within the cascade, consistently with the modular architecture of the lambda genome. The single-cell time lapse study reveals a bistable regime at low UV doses in which some cells are induced while others are not, evidence for a commitment point beyond which lysis will occur, and an unexpected shutoff of the lambda pR promoter.
Stochasticity or noise, an inherent property of all biological networks, is often manifested by different phenotypic behaviors in clonal populations of cells (Raser and O'Shea, 2005). Noise can arise, for instance, from sources such as cell–cell variations in small numbers of regulatory molecules or from the stochastic nature of molecular interactions (Paulsson, 2005). Besides affecting the number of molecules in a cell, noise may also lead to variability in timing of particular events along a given pathway. In this work, we studied temporal noise in the induction cascade of phage lambda. Infection of a bacterial cell by bacteriophage lambda can lead to two different fates (Ptashne, 2004; Dodd et al, 2005; Oppenheim et al, 2005): the phage can either multiply inside the host leading to its eventual lysis and the generation of progeny virions (the lytic pathway) or, alternatively, it can integrate its genome into the host's genome (prophage state), replicating passively with the latter (the lysogenic pathway). The prophage state is highly stable, being maintained by a phage-encoded repressor, which shuts off phage genes leading to lytic growth. However, the lytic pathway can be induced in a lysogenic cell, through the activation of the bacterial SOS response to DNA damage (Little, 1996), for example by UV irradiation. Once activated, the SOS response results in cleavage of the lambda repressor, leading to expression of the phage early and late genes, and culminating in the lysis of the host cell. The lambda induction cascade has been extensively characterized over the years. We built upon this knowledge to tap the cascade at different points and quantitatively analyze the progressive loss of temporal coherence between cells, as different stages along the cascade are executed, following synchronous induction. Using time-lapse microscopy, we monitored the time of activation of early and late genes in individual cells using lambda pR and pR′-tR′ promoter-GFP fusions, respectively, by means of reporter plasmids, and finally the time of lysis. Sample results are shown in Figure 2. At low UV levels (5 J/m2), the network exhibits bistability: only approximately 40% of the bacteria lyse, whereas the others continue to divide, following a lag period. At high UV levels (20 J/m2), almost all bacteria lyse. We found that the timing of events in cells that lyse is independent of UV dose. This is in contrast to the known behavior of the SOS network (Friedman et al, 2005), indicating that these two networks proceed independently. Following induction, a surprising shutoff in the activity of the pR promoter is observed in all cells (see Figure 2). Furthermore, the data show that whereas early genes are expressed in all cells irrespective of cell fate, late genes are expressed only in the lysing cells, indicating that similar to infection, a specific commitment checkpoint is operating. To characterize the temporal variability in a cell population, we used the coefficient of variation, defined as the non-dimensional ratio of the standard deviation and the mean time of occurrence of a particular event. We studied the changes in both standard deviation and coefficient of variation in timing of various events along the lambda induction cascade, from the expression of the early genes to the ultimate lysis of the cells. As shown in Figure 6, the absolute noise as measured by the standard deviation increases as the cascade progresses. In contrast, the coefficient of variation, which measures variability relative to the time of occurrence, decreases. Simple theoretical considerations described in the text yield a necessary and sufficient condition for a monotonic decrease in the coefficient of variation. Higher temporal precision can be achieved when the cascade is composed of a large number of fast steps. Further support for the independence of network modules is furnished by a correlation analysis of the times of occurrence of different steps along the lytic cascade. This analysis also indicates that the variability in lysis time is not due to differences in the global rate of cascade progression, but probably to random fluctuations in the execution time of the various cascade stages. Indeed, phage lambda gene expression architecture is well known to have evolved from a number of independent regulatory modules (Hendrix, 2003). Biological developmental pathways require proper timing of gene expression. We investigated timing variations of defined steps along the lytic cascade of bacteriophage λ. Gene expression was followed in individual lysogenic cells, after induction with a pulse of UV irradiation. At low UV doses, some cells undergo partial induction and eventually divide, whereas others follow the lytic pathway. The timing of events in cells committed to lysis is independent of the level of activation of the SOS response, suggesting that the lambda network proceeds autonomously after induction. An increased loss of temporal coherence of specific events from prophage induction to lysis is observed, even though the coefficient of variation of timing fluctuations decreases. The observed temporal variations are not due to cell factors uniformly dilating the timing of execution of the cascade. This behavior is reproduced by a simple model composed of independent stages, which for a given mean duration predicts higher temporal precision, when a cascade consists of a large number of steps. Evidence for the independence of regulatory modules in the network is presented.
Collapse
Affiliation(s)
- Amnon Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Kobiler
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Assaf Rokney
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amos B Oppenheim
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +97 289 342 615; Fax: +97 289 344 109;
| |
Collapse
|
44
|
Stirnberg M, Fulda S, Huckauf J, Hagemann M, Krämer R, Marin K. A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp. PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis. Mol Microbiol 2007; 63:86-102. [PMID: 17116240 DOI: 10.1111/j.1365-2958.2006.05495.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein quality control and proteolysis are involved in cell maintenance and environmental acclimatization in bacteria and eukaryotes. The AAA protease FtsH2 of the cyanobacterium Synechocystis sp. PCC 6803 was identified during a screening for mutants impaired in osmoregulation. The ftsH2(-) mutant was salt sensitive because of a decreased level of the osmoprotectant glucosylglycerol (GG). In spite of wild type-like transcription of the ggpS gene in ftsH2(-) cells the GgpS protein content increased but only low levels of GgpS activity were observed. Consequently, salt tolerance of the ftsH2(-) mutant decreased while addition of external osmolyte complemented the salt sensitivity. The proteolytic degradation of the GgpS protein by FtsH2 was demonstrated by an in vitro assay using inverted membrane vesicles. The GgpS is part of a GG synthesizing complex, because yeast two-hybrid screens identified a close interaction with the GG-phosphate phosphatase. Besides GgpS as the first soluble substrate of a cyanobacterial FtsH protease, several other putative targets were identified by a proteomic approach. We present a novel molecular explanation for the salt-sensitive phenotype of bacterial ftsH(-) mutants as the result of accumulation of inactive enzymes for compatible solute synthesis, in this case GgpS the key enzyme of GG synthesis.
Collapse
Affiliation(s)
- Marit Stirnberg
- Universität zu Köln, Institut für Biochemie, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
46
|
Okuno T, Yamanaka K, Ogura T. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Genes Cells 2006; 11:261-8. [PMID: 16483314 DOI: 10.1111/j.1365-2443.2006.00940.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli FtsH, which belongs to the AAA (ATPases associated with diverse cellular activities) family, is an ATP-dependent and membrane-bound protease. FtsH degrades misassembled membrane proteins and a subset of cytoplasmic regulatory proteins. It has been proposed that ATP-dependent proteases unfold substrate proteins and initiate a processive proteolysis from either terminus of the substrate polypeptide. We have found that FtsH degrades E. coli apo-flavodoxin (apo-Fld) but not holo-Fld containing non-covalently bound flavin mononucleotide (FMN). A mutant Fld carrying a substitution of Tyr94 to Asp (Fld(YD)) with a lower affinity for FMN was efficiently degraded by FtsH. To elucidate the directionality of Fld(YD) degradation by FtsH, we constructed several Fld(YD) fusion proteins with glutathione S-transferase (GST), green fluorescent protein (GFP), or both GST and GFP. It was found that FtsH was able to initiate degradation of the Fld(YD) moiety even when it was sandwiched by GST and GFP. Evidence indicated that FtsH can initiate proteolysis of GST-Fld(YD)-GFP from the Fld(YD) moiety by translocating an internal loop to the protease chamber in an ATP-dependent manner and that, at least, the proteolysis in the C to N direction proceeds processively.
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
47
|
Führer F, Langklotz S, Narberhaus F. The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 2006; 59:1025-36. [PMID: 16420369 DOI: 10.1111/j.1365-2958.2005.04994.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipopolysaccharide (LPS) biosynthesis is essential in Gram negative bacteria. LpxC, the key enzyme in LPS formation, catalyses the limiting reaction and controls the ratio between LPS and phospholipids. As overproduction of LPS is toxic, the cellular amount of LpxC must be regulated carefully. The membrane-bound protease FtsH controls the level of LpxC via proteolysis making FtsH the only essential protease of Escherichia coli. We found that the chaperones DnaK and DnaJ co-purified with LpxC. However, degradation of LpxC was DnaK/J-independent in contrast to turnover of the heat shock sigma factor sigma32 (RpoH). The stability of LpxC in a bacterial one-hybrid system suggested that a terminus of LpxC might be important for degradation. Different LpxC truncations and extensions were constructed. Removal of at least five amino acids from the C-terminus abolished degradation by FtsH in vivo. While addition of two aspartic acids to LpxC did not alter its half-life, the exchange of the last two residues against aspartic acids resulted in stabilization. All stable LpxC enzymes were active in vivo as assayed by their high toxicity. Our data demonstrate that the C-terminus of LpxC contains a signal sequence necessary for FtsH-dependent degradation.
Collapse
Affiliation(s)
- Frank Führer
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
48
|
Bieniossek C, Schalch T, Bumann M, Meister M, Meier R, Baumann U. The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci U S A 2006; 103:3066-71. [PMID: 16484367 PMCID: PMC1413944 DOI: 10.1073/pnas.0600031103] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent integral membrane protease FtsH is universally conserved in bacteria. Orthologs exist in chloroplasts and mitochondria, where in humans the loss of a close FtsH-homolog causes a form of spastic paraplegia. FtsH plays a crucial role in quality control by degrading unneeded or damaged membrane proteins, but it also targets soluble signaling factors like sigma(32) and lambda-CII. We report here the crystal structure of a soluble FtsH construct that is functional in caseinolytic and ATPase assays. The molecular architecture of this hexameric molecule consists of two rings where the protease domains possess an all-helical fold and form a flat hexagon that is covered by a toroid built by the AAA domains. The active site of the protease classifies FtsH as an Asp-zincin, contrary to a previous report. The different symmetries of protease and AAA rings suggest a possible translocation mechanism of the target polypeptide chain into the interior of the molecule where the proteolytic sites are located.
Collapse
Affiliation(s)
- Christoph Bieniossek
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Thomas Schalch
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, Hoenggerberg, HPK Building, CH-8093 Zurich, Switzerland
| | - Mario Bumann
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Markus Meister
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Reto Meier
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Ulrich Baumann
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Abstract
The lysis-lysogeny decision of bacteriophage lambda (lambda) is a paradigm for developmental genetic networks. There are three key features, which characterize the network. First, after infection of the host bacterium, a decision between lytic or lysogenic development is made that is dependent upon environmental signals and the number of infecting phages per cell. Second, the lysogenic prophage state is very stable. Third, the prophage enters lytic development in response to DNA-damaging agents. The CI and Cro regulators define the lysogenic and lytic states, respectively, as a bistable genetic switch. Whereas CI maintains a stable lysogenic state, recent studies indicate that Cro sets the lytic course not by directly blocking CI expression but indirectly by lowering levels of CII which activates cI transcription. We discuss how a relatively simple phage like lambda employs a complex genetic network in decision-making processes, providing a challenge for theoretical modeling.
Collapse
Affiliation(s)
- Amos B Oppenheim
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
50
|
Abstract
FtsH is a cytoplasmic membrane protein that has N-terminally located transmembrane segments and a main cytosolic region consisting of AAA-ATPase and Zn2+-metalloprotease domains. It forms a homo-hexamer, which is further complexed with an oligomer of the membrane-bound modulating factor HflKC. FtsH degrades a set of short-lived proteins, enabling cellular regulation at the level of protein stability. FtsH also degrades some misassembled membrane proteins, contributing to their quality maintenance. It is an energy-utilizing and processive endopeptidase with a special ability to dislocate membrane protein substrates out of the membrane, for which its own membrane-embedded nature is essential. We discuss structure-function relationships of this intriguing enzyme, including the way it recognizes the soluble and membrane-integrated substrates differentially, on the basis of the solved structure of the ATPase domain as well as extensive biochemical and genetic information accumulated in the past decade on this enzyme.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|