1
|
Zhou N, Miao K, Hou L, Liu H, Chen J, Ji Y. Phylotranscriptomic analyses reveal the evolutionary complexity of Paris L. (Melanthiaceae), a morphologically distinctive genus with significant pharmaceutical importance. ANNALS OF BOTANY 2024; 134:1277-1290. [PMID: 39221840 PMCID: PMC11688527 DOI: 10.1093/aob/mcae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Previous phylogenetic studies on the pharmaceutically significant genus Paris (Melanthiaceae) have consistently revealed substantial cytonuclear discordance, yet the underlying mechanism responsible for this phenomenon remains elusive. This study aims to reconstruct a robust nuclear backbone phylogeny and elucidate the potential evolutionarily complex events contributing to previously observed cytonuclear discordance within Paris. METHODS Based on a comprehensive set of nuclear low-copy orthologous genes obtained from transcriptomic data, the intrageneric phylogeny of Paris, along with its phylogenetic relationships to allied genera, were inferred using coalescent and concatenated approaches. The analysis of gene tree discordance and reticulate evolution, in conjunction with an incomplete lineage sorting (ILS) simulation, was conducted to explore potential hybridization and ILS events in the evolutionary history of Paris and assess their contribution to the discordance of gene trees. KEY RESULTS The nuclear phylogeny unequivocally confirmed the monophyly of Paris and its sister relationship with Trillium, while widespread incongruences in gene trees were observed at the majority of internal nodes within Paris. The reticulate evolution analysis identified five instances of hybridization events in Paris, indicating that hybridization events might have occurred recurrently throughout the evolutionary history of Paris. In contrast, the ILS simulations revealed that only two internal nodes within section Euthyra experienced ILS events. CONCLUSIONS Our data suggest that the previously observed cytonuclear discordance in the phylogeny of Paris can primarily be attributed to recurrent hybridization events, with secondary contributions from infrequent ILS events. The recurrent hybridization events in the evolutionary history of Paris not only drove lineage diversification and speciation but also facilitated morphological innovation, and enhanced ecological adaptability. Therefore, artificial hybridization has great potential for breeding medicinal Paris species. These findings significantly contribute to our comprehensive understanding of the evolutionary complexity of this pharmaceutically significant plant lineage, thereby facilitating effective exploitation and conservation efforts.
Collapse
Affiliation(s)
- Nian Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Miao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Luxiao Hou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
2
|
Uckele KA, Vargas OM, Kay KM. Prezygotic barriers effectively limit hybridization in a rapid evolutionary radiation. THE NEW PHYTOLOGIST 2024; 244:2548-2560. [PMID: 39400313 PMCID: PMC11579434 DOI: 10.1111/nph.20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
Hybridization is increasingly recognized as an important evolutionary process across the tree of life. In many clades, phylogenomic approaches have permitted unparalleled insight into the extent and frequency of hybridization. However, we continue to lack a deep understanding of the factors that limit and shape patterns of hybridization, especially in evolutionary radiations. In this study, we characterized patterns of introgression across Costus (Costaceae), a young evolutionary radiation of tropical understory plants that maintain widespread interfertility despite exhibiting strong prezygotic reproductive isolation. We analyzed a phylogenomic dataset of 756 genes from 54 Costus species using multiple complementary approaches - D-statistics, gene-tree-based tests, and phylogenetic network analyses - to detect and characterize introgression events throughout the evolutionary history of the radiation. Our results identified a moderate number of introgression events, including a particularly ancient, well-supported event spanning one of the deepest divergences in the clade. Most introgression events occurred between taxa or ancestral lineages that shared the same pollination syndrome (bee-pollinated or hummingbird-pollinated). These findings suggest that prezygotic barriers, including pollinator specialization, have been key to the balance between introgression and reproductive isolation in Costus.
Collapse
Affiliation(s)
- Kathryn A. Uckele
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| | - Oscar M. Vargas
- Department of Biological SciencesCalifornia State Polytechnic UniversityHumboldt, ArcataCA95521USA
| | - Kathleen M. Kay
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| |
Collapse
|
3
|
Horton DM, Feleke Y, Pasquet RS, Javadi F, Melville KA, Delgado-Salinas A, Thulin M, Mithen RF, Gepts P, Egan AN. Phylogenetic systematics of Vigna sensu stricto in the context of Physostigma and allies. AMERICAN JOURNAL OF BOTANY 2024; 111:e16381. [PMID: 39107933 DOI: 10.1002/ajb2.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 11/06/2024]
Abstract
PREMISE Vigna includes economically vital crops and wild species. Molecular systematic studies of Vigna species resulted in generic segregates of many New World (NW) species. However, limited Old World (OW) sampling left questions regarding inter- and intraspecific relationships in Vigna s.s. METHODS African species, including the putative sister genus Physostigma, were comprehensively sampled within the context of NW relatives. Maximum likelihood and Bayesian inference analyses of the chloroplast matK-trnK and nuclear ribosomal ITS/5.8 S (ITS) DNA regions were undertaken to resolve OW Vigna taxonomic questions. Divergence dates were estimated using BEAST to date key nodes in the phylogeny. RESULTS Analyses of matK and ITS data supported five clades of Vigna s.s.: subg. Lasiospron, a reduced subg. Vigna, subg. Haydonia, subg. Ceratotropis, an enlarged subg. Plectrotropis, and a clade including V. kirkii and V. stenophylla. Genome size estimates of 601 Mb for V. kirkii are near the overall mean of the genus, whereas V. stenophylla had a larger genome (810 Mb), similar to some Vigna subg. Ceratotropis or Plectrotropis species. CONCLUSIONS Former subg. Vigna is reduced to yellow- and blue-flowered species and subg. Plectrotropis is enlarged to mostly all white-, pink-, and purple-flowered species. The age of the split between NW and OW Vigna lineages is ~6-7 Myr. Genome size estimates cannot rule out a polyploid or hybrid origin for V. stenophylla, potentially involving extinct lineage ancestors of Vigna subg. Ceratotropis or Plectrotropis, as indicated by network and phylogenetic analyses. Taxonomic revisions are suggested based on these results.
Collapse
Affiliation(s)
- Dasha M Horton
- Department of Biology, Utah Valley University, Orem, 84058, UT, USA
| | - Yonas Feleke
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA, USA
| | | | - Firouzeh Javadi
- Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka, Japan
- Kyushu University Museum, Kyushu University, Fukuoka, Japan
| | | | - Alfonso Delgado-Salinas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-233, CDMX, 04510, México
| | - Mats Thulin
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, SE-75236, Sweden
| | | | - Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA, USA
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, 84058, UT, USA
| |
Collapse
|
4
|
Messeder JVS, Carlo TA, Zhang G, Tovar JD, Arana C, Huang J, Huang CH, Ma H. A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L. THE NEW PHYTOLOGIST 2024; 243:765-780. [PMID: 38798267 DOI: 10.1111/nph.19849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.
Collapse
Affiliation(s)
- João Vitor S Messeder
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tomás A Carlo
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guojin Zhang
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Juan David Tovar
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, 69060-001, Brazil
| | - César Arana
- Museo de Historia Natural and Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia University, Hohhot, 010000, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Boom AF, Migliore J, Ojeda Alayon DI, Kaymak E, Hardy OJ. Phylogenomics of Brachystegia: Insights into the origin of African miombo woodlands. AMERICAN JOURNAL OF BOTANY 2024; 111:e16352. [PMID: 38853465 DOI: 10.1002/ajb2.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024]
Abstract
PREMISE Phylogenetic approaches can provide valuable insights on how and when a biome emerged and developed using its structuring species. In this context, Brachystegia Benth, a dominant genus of trees in miombo woodlands, appears as a key witness of the history of the largest woodland and savanna biome of Africa. METHODS We reconstructed the evolutionary history of the genus using targeted-enrichment sequencing on 60 Brachystegia specimens for a nearly complete species sampling. Phylogenomic inferences used supermatrix (RAxML-NG) and summary-method (ASTRAL-III) approaches. Conflicts between species and gene trees were assessed, and the phylogeny was time-calibrated in BEAST. Introgression between species was explored using Phylonet. RESULTS The phylogenies were globally congruent regardless of the method used. Most of the species were recovered as monophyletic, unlike previous plastid phylogenetic reconstructions where lineages were shared among geographically close individuals independently of species identity. Still, most of the individual gene trees had low levels of phylogenetic information and, when informative, were mostly in conflict with the reconstructed species trees. These results suggest incomplete lineage sorting and/or reticulate evolution, which was supported by network analyses. The BEAST analysis supported a Pliocene origin for current Brachystegia lineages, with most of the diversification events dated to the Pliocene-Pleistocene. CONCLUSIONS These results suggest a recent origin of species of the miombo, congruently with their spatial expansion documented from plastid data. Brachystegia species appear to behave potentially as a syngameon, a group of interfertile but still relatively well-delineated species, an aspect that deserves further investigations.
Collapse
Affiliation(s)
- Arthur F Boom
- Royal Museum for Central Africa, Biology Department, Section Vertebrates, Tervuren, Belgium
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| | - Jérémy Migliore
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Muséum départemental du Var, Toulon, France
| | - Dario I Ojeda Alayon
- Muséum départemental du Var, Toulon, France
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Esra Kaymak
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Institute of Science and Technology (OIST), Okinawa, Japan
| | - Olivier J Hardy
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| |
Collapse
|
6
|
Huang W, Ding Y, Fan S, Liu W, Chen H, Segar S, Compton SG, Yu H. A high-quality chromosome-level genome assembly of Ficus hirta. Sci Data 2024; 11:526. [PMID: 38778063 PMCID: PMC11111794 DOI: 10.1038/s41597-024-03376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Ficus species (Moraceae) play pivotal roles in tropical and subtropical ecosystems. Thriving across diverse habitats, from rainforests to deserts, they harbor a multitude of mutualistic and antagonistic interactions with insects, nematodes, and pathogens. Despite their ecological significance, knowledge about the genomic background of Ficus remains limited. In this study, we report a chromosome-level reference genome of F. hirta, with a total size of 297.27 Mb, containing 28,625 protein-coding genes and 44.67% repeat sequences. These findings illuminate the genetic basis of Ficus responses to environmental challenges, offering valuable genomic resources for understanding genome size, adaptive evolution, and co-evolution with natural enemies and mutualists within the genus.
Collapse
Affiliation(s)
- Weicheng Huang
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yamei Ding
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songle Fan
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wanzhen Liu
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongfeng Chen
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Simon Segar
- Department of Crop and Environment Sciences, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Hui Yu
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
7
|
Wang X, Liao S, Zhang Z, Zhang J, Mei L, Li H. Hybridization, polyploidization, and morphological convergence make dozens of taxa into one chaotic genetic pool: a phylogenomic case of the Ficus erecta species complex (Moraceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1354812. [PMID: 38595762 PMCID: PMC11002808 DOI: 10.3389/fpls.2024.1354812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The Ficus erecta complex, characterized by its morphological diversity and frequent interspecific overlap, shares pollinating fig wasps among several species. This attribute, coupled with its intricate phylogenetic relationships, establishes it as an exemplary model for studying speciation and evolutionary patterns. Extensive researches involving RADseq (Restriction-site associated DNA sequencing), complete chloroplast genome data, and flow cytometry methods were conducted, focusing on phylogenomic analysis, genetic structure, and ploidy detection within the complex. Significantly, the findings exposed a pronounced nuclear-cytoplasmic conflict. This evidence, together with genetic structure analysis, confirmed that hybridization within the complex is a frequent occurrence. The ploidy detection revealed widespread polyploidy, with certain species exhibiting multiple ploidy levels, including 2×, 3×, and 4×. Of particular note, only five species (F. abelii, F. erecta, F. formosana, F. tannoensis and F. vaccinioides) in the complex were proved to be monophyletic. Species such as F. gasparriniana, F. pandurata, and F. stenophylla were found to encompass multiple phylogenetically distinct lineages. This discovery, along with morphological comparisons, suggests a significant underestimation of species diversity within the complex. This study also identified F. tannoensis as an allopolyploid species originating from F. vaccinioide and F. erecta. Considering the integration of morphological, molecular systematics, and cytological evidences, it is proposed that the scope of the F. erecta complex should be expanded to the entire subsect. Frutescentiae. This would redefine the complex as a continuously evolving group comprising at least 33 taxa, characterized by blurred species boundaries, frequent hybridization and polyploidization, and ambiguous genetic differentiation.
Collapse
Affiliation(s)
- Xiaomei Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuai Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Zhen Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - Jianhang Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Li Mei
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongqing Li
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Duan L, Fu L, Chen HF. Phylogenomic cytonuclear discordance and evolutionary histories of plants and animals. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2946-2948. [PMID: 37930475 DOI: 10.1007/s11427-023-2456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Lin Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Oldenbeuving A, Gómez‐Zúniga A, Florez‐Buitrago X, Gutiérrez‐Zuluaga AM, Machado CA, Van Dooren TJM, van Alphen J, Biesmeijer JC, Herre EA. Field sampling of fig pollinator wasps across host species and host developmental phase: Implications for host recognition and specificity. Ecol Evol 2023; 13:e10501. [PMID: 37706164 PMCID: PMC10495548 DOI: 10.1002/ece3.10501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Previous genetic studies of pollinator wasps associated with a community of strangler figs (Ficus subgenus Urostigma, section Americana) in Central Panama suggest that the wasp species exhibit a range in host specificity across their host figs. To better understand factors that might contribute to this observed range of specificity, we used sticky traps to capture fig-pollinating wasp individuals at 13 Ficus species, sampling at different phases of the reproductive cycle of the host figs (e.g., trees with receptive inflorescences, or vegetative trees, bearing only leaves). We also sampled at other tree species, using them as non-Ficus controls. DNA barcoding allowed us to identify the wasps to species and therefore assign their presence and abundance to host fig species and the developmental phase of that individual tree. We found: (1) wasps were only very rarely captured at non-Ficus trees; (2) nonetheless, pollinators were captured often at vegetative individuals of some host species; (3) overwhelmingly, wasp individuals were captured at receptive host fig trees representing the fig species from which they usually emerge. Our results indicate that wasp occurrence is not random either spatially or temporally within the forest and across these hosts, and that wasp specificity is generally high, both at receptive and vegetative host trees. Therefore, in addition to studies that show chemicals produced by receptive fig inflorescences attract pollinator wasps, we suggest that other cues (e.g., chemicals produced by the leaves) can also play a role in host recognition. We discuss our results in the context of recent findings on the role of host shifts in diversification processes in the Ficus genus.
Collapse
Affiliation(s)
- Aafke Oldenbeuving
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | | | | | | | | | - Tom J. M. Van Dooren
- Naturalis Biodiversity CenterLeidenThe Netherlands
- CNRS, Institute of Ecology and Environmental SciencesParisFrance
| | | | - Jacobus C. Biesmeijer
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
10
|
Gardner EM, Bruun-Lund S, Niissalo M, Chantarasuwan B, Clement WL, Geri C, Harrison RD, Hipp AL, Holvoet M, Khew G, Kjellberg F, Liao S, Pederneiras LC, Peng YQ, Pereira JT, Phillipps Q, Ahmad Puad AS, Rasplus JY, Sang J, Schou SJ, Velautham E, Weiblen GD, Zerega NJC, Zhang Q, Zhang Z, Baraloto C, Rønsted N. Echoes of ancient introgression punctuate stable genomic lineages in the evolution of figs. Proc Natl Acad Sci U S A 2023; 120:e2222035120. [PMID: 37399402 PMCID: PMC10334730 DOI: 10.1073/pnas.2222035120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023] Open
Abstract
Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.
Collapse
Affiliation(s)
- Elliot M. Gardner
- International Center for Tropical Botany at the Kampong, Institute of Environment, Florida International University, Miami, FL33133
- National Tropical Botanical Garden, Kalāheo, HI96741
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - Sam Bruun-Lund
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| | - Matti Niissalo
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - Bhanumas Chantarasuwan
- Thailand National History Museum, National Science Museum, Klong Luang, Pathum Thani12120, Thailand
| | - Wendy L. Clement
- Department of Biology, The College of New Jersey, Ewing, NJ08618
| | - Connie Geri
- Sarawak Forestry Corporation, 93250Kuching, Sarawak, Malaysia
| | | | | | - Maxime Holvoet
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| | - Gillian Khew
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - Finn Kjellberg
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, 34090Montpellier, France
| | - Shuai Liao
- The Morton Arboretum, Lisle, IL60532
- South China Botanical Garden, Chinese Academy of Sciences, 510650Guangzhou, China
- School of Life Sciences, East China Normal University, 200241Shanghai, China
| | - Leandro Cardoso Pederneiras
- Instituto de Pesquisa do Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, 22460-030Rio de Janeiro–RJ, Brazil
| | - Yan-Qiong Peng
- Chinese Academy of Sciences, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303Mengla, China
| | - Joan T. Pereira
- Sabah Forest Research Centre, Sabah Forestry Department, 90175Sandakan, Sabah, Malaysia
| | | | - Aida Shafreena Ahmad Puad
- Faculty of Agriculture & Applied Sciences, i-CATS University College, 93350Kuching, Sarawak, Malaysia
| | - Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 34988Montpellier, France
| | - Julia Sang
- Sarawak Forest Department, 34988Kuching, Sarawak, Malaysia
| | - Sverre Juul Schou
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| | - Elango Velautham
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - George D. Weiblen
- Bell Museum, University of Minnesota, St. Paul, MN55113
- Department of Plant Biology, University of Minnesota, St. Paul, MN55108
| | - Nyree J. C. Zerega
- Plant Biology and Conservation, Northwestern University, Evanston, IL60208
- Negaunee Institute for Plant Conservation and Action, Chicago Botanic Garden, Glencoe, IL60022
| | - Qian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093Beijing, China
| | - Zhen Zhang
- School of Life Sciences, East China Normal University, 200241Shanghai, China
| | - Christopher Baraloto
- International Center for Tropical Botany at the Kampong, Institute of Environment, Florida International University, Miami, FL33133
| | - Nina Rønsted
- National Tropical Botanical Garden, Kalāheo, HI96741
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| |
Collapse
|